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Preface

Constraints are a natural way to represent knowledge, and constraint program-
ming is a declarative programming paradigm successfully used to solve many
difficult combinatorial problems. Examples of application domains where such
problems naturally arise, and where constraint programming has made a valuable
contribution, are scheduling, production planning, communication networks,
robotics, and bioinformatics.

This volume contains the extended and reviewed versions of a selection of
papers presented at the 11th International Workshop on Constraint Solving
and Constraint Logic Programming (CSCLP 2006), that was held during June
26–28, 2006 at the New University of Lisbon, Portugal. It also contains papers
that were submitted in response to the open call that followed the workshop.
Both types of papers were reviewed independently by three experts in the specific
topics.

The papers in this volume present original research results, as well as appli-
cations, in many aspects of constraint solving and constraint logic programming.
Research topics that can be found in the papers are symmetry breaking, privacy,
distributed forward checking, quantified CSPs, bipolar preferences, first-order
constraints, microstructure, constraint handling rules, acyclic clustered prob-
lems, as well as the analysis of application domains such as disjunctive resource
problems and stochastic inventory control. Moreover, the volume also contains
a tutorial on hybrid algorithms.

The editors would like to take the opportunity to thank all the authors who
submitted a paper to this volume, as well as the reviewers for their helpful work.
This volume was made possible thanks to the support of the European Re-
search Consortium for Informatics and Mathematics (ERCIM), the Association
for Constraint Programming (ACP), the Portuguese Foundation for Science and
Technology (FCT), the Department of Computer Science of the New University
of Lisbon, and its Centre for Artificial Intelligence (CENTRIA).

We hope that the present volume is useful to everyone interested in the recent
advances and new trends in constraint programming, constraint solving, problem
modelling, and applications.

March 2007 F. Azevedo
P. Barahona

F. Fages
F. Rossi
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Hybrid Algorithms in Constraint Programming

Mark Wallace

Monash University, Faculty of Information Technology,
Building 63, Clayton, Vic. 3800, Australia
mark.wallace@infotech.monash.edu.au
http://www.infotech.monash.edu.au/

Abstract. This paper surveys hybrid algorithms from a constraint pro-
gramming perspective. It introduces techniques used within a construc-
tive search framework, such as propagation and linear relaxation, as well
as techniques used in combination with search by repair.

Keywords: constraint programming, hybrid algorithms, search.

1 Introduction

1.1 Tribes

There are three research communities exploring combinatorial optimisation prob-
lems. Within each community there is strong debate and ideas are shared natu-
rally. Between the communities, however, there is a lack of common background
and limited cross-fertilisation.

We belong to one of those communities: the CP community.1 The other two
are Mathematical Programming (MP) and Local Search and meta-heuristics
(LS). Currently LS seems to be the largest of the three. It has become clear that
such a separation hampers progress towards our common goal, and there should
be one larger community - whose name is a point of contention - which should
include us all.

Hybrid algorithms lie at the boundary between CP, MP and LS. We will ex-
plore some of the techniques used in MP and LS, and show how they can be used
in conjunction with CP techniques to build better algorithms. We will not here
be investigating the “frontiers of research” in these communities. However it is
my belief that CP can contribute right now at these frontiers. Hybrid techniques
are not peripheral to the research of any of these communities. They are the key
to real progress in all three.

1.2 Overview

Firstly we explore the mapping of problems to algorithms, the requirement for
problem decomposition, and the need for linking solvers and solver cooperation.
1 There are also, of course, many people in the CP community who are not exploring

combinatorial optimisation problems.

F. Azevedo et al. (Eds.): CSCLP 2006, LNAI 4651, pp. 1–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 M. Wallace

Different ways of linking solvers will be discussed, and some of their benefits and
applications.

Secondly we will investigate different kinds of search, coming from the different
communities, and see how they can be used separately, and together.

The paper is presented from a CP viewpoint, aimed at a CP audience. How-
ever, the objective is to lower the barrier to exploiting hybrid techniques, encour-
aging research at the boundaries of CP, MP and LS, and finally to help bring
these communities together.

2 Hybrid Constraint Solving

2.1 The Conceptual Model and the Design Model

To solve a problem we start with a problem-oriented conceptual model. The
syntax of conceptual models is targeted to clarity, expressive power and ease of
use for people interested in solving the problem.

The conceptual model is mapped down to a design model which is machine-
oriented [Ger01]. The design model specifies the algorithm(s) which will be used
to solve the problem at a level that can be interpreted by currently implemented
programming platforms, like ECLiPSe [AW06].

The CP community usually separates the model from the search strategy. The
design model in our terminology includes both a model with variables and con-
straints and a search strategy. The variables and constraints in the design model
are chosen so as to be easy to solve, and to fit with the search routine. Moreover
with each constraint in the design model solving methods are specified which as-
sociate a behaviour with the constraint. Though the variables and constraints in
the design model of a problem may be quite different from those in its conceptual
model, they are logically equivalent - they represent the same set of solutions.
In principle, the conceptual modeling language could be a subset of the design
modeling language.

Real problems are complex and, especially, they involve different kinds of con-
straints and variables. For example a “workforce scheduling” problem [AAH95]
typically involves the following decision variables:

– For each task, one or more employees assigned to the task.
– For each task, a start time
– For each (group of) employee(s), a route that takes them from task to task.
– For each (group of) employee(s), shift start, end, and break times

This is in sharp contrast to typical CSP puzzles and benchmarks, such as
graph colouring, where all the variables are of the same “kind” and sometimes
even have the same initial domains.

The constraints and data in real problems are also diverse. The workforce
scheduling problem includes:

– Location and distance constraints on and between tasks
– Skills data and constraints on and between employees and tasks
– Time constraints on tasks and employee shifts
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Naturally there are many more constraints in real workforce scheduling problems
on vehicles, road speeds, equipment, team composition and so on.

The consequence is that the algorithm(s) needed to solve real problems are
typically hybrid. The skills constraints are best solved by a different
sub-algorithm from the routing constraints, for example.

2.2 Mapping from the Conceptual to the Design Model

To map a problem description to an algorithm, it is often necessary to decompose
the whole problem into parts that can be efficiently solved. The challenge is to
be able to glue the subproblem solutions together into a consistent solution to
the whole problem. Moreover, for optimisation problems, it is not enough to find
the optimal solution to each subproblem. Glueing these “local” optima together
does not necessarily yield a “global” optimum.

For these reasons we need to ensure that the subproblem algorithms cooperate
with each other so as to produce solutions that are both consistent with each
other and, as near optimal as possible. The design of hybrid algorithms that meet
these criteria is the topic of this section.

In principle we can map a conceptual model to a design model by

– Associating a behaviour, or a constraint solver, with each problem constraint
– Adding a search algorithm to make up for the incompleteness of the con-

straint solvers

In practice the design model produced by any such mapping is strongly influ-
enced by the particular choice of conceptual model. The “wrong” conceptual
model could make it very hard to produce an efficient algorithm to solve the
problem.

For this reason we must map a given conceptual model to an efficient design
model in two steps:

– Transform the conceptual model into another one that is more suitable for
mapping

– Add constraint behaviour and search, to yield an efficient design model

The first step - transforming the conceptual model - is an art rather than a
science. It involves four kinds of transformations:

– Decomposition - separating the constraints and variables into subproblems
– Transformation - rewriting the constraints and variables into a form more

suitable for certain kinds of solving and search
– Tightening - the addition of new constraints whose behaviour will enhance

efficient problem solving
– Linking - the addition of constraints and variables that will keep the separate

subproblem solvers “in step” during problem solving

The decomposition is germane to our concerns. It is therefore worth discussing
briefly here. Firstly, we note that the decomposition covers the original problem
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(of course), but it is not a partition: otherwise the subproblems would have no
link whatsoever between them.

Therefore some subproblems share some variables.2 Each subproblem solver
can then make changes to a shared variable, which can be used by the other
solver. Sometimes constraints are shared by different subproblems. In this case
the same constraint is handled multiple times by different solvers, possibly yield-
ing different and complementary information within each solver. When the con-
straints in different subproblems are transformed in different ways, the result is
that the same constraint may appear several times in several different forms in
the transformed conceptual model. We shall see later a model with a resource
constraint that is written three different ways for three different solvers.

We shall now move on to examine design models for a variety of hybrid
algorithms.

3 Constraint Solvers

In this section we discuss different constraint solvers, and constraint behaviours.
We investigate what kinds of information can be passed between them, in differ-
ent hybrid algorithms, and how their cooperative behaviour can be controlled.

The solvers, and constraint behaviours, we will cover are

– Finite domain (FD) constraint propagation and solving
– Global constraints and their behaviour
– Interval constraints, and bounds propagation
– Linear constraint solving
– Propositional clause (SAT) solving
– Set constraint solving
– One-way constraints (or “invariants”)

Referring back to the three research communities, we can relate these solvers
to the CP and MP communities. Accordingly this work lies on the border of CP
and MP. The hybrids on the border of CP and LS will be explored in the next
section.

3.1 Modelling Requirements for Constraint Solvers

Supposing a constraint C appears in the conceptual model and it is to be handled
by a particular solver, say FD. Then the design model must express a number
of requirements.

Firstly it must associate an initial domain which each of the variables in em C.
For the solver FD, the initial domains are discrete, and finite. For other solvers,

2 This is a simplification. For example mathematical decomposition techniques such
as Lagrangian relaxation and column generation use more sophisticated techniques
than shared variables to relate the subproblems and the master problem. These will
be discussed in sections 4.2 and 5.1 below.
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such as SAT or linear, they must be initialised as booleans, or reals as required
by the solvers.

Secondly the constraint should be explicitly associated with a particular
solver. It may also be associated with more than one solver - and this is the
subject of section 4 below.

Thirdly its activation conditions must be specified. A constraint can be ac-
tivated by simply sending it to the solver, so that it is automatically handled
whenever the solver is invoked, or by explicitly introducing conditions under
which it should be woken. For an almost linear constraint, for example, which
includes a few non-linear expressions, the constraint might only be woken and
sent to the linear solver once all its expressions have become linear. The most
common use of explicit waking is for propagation constraints, discussed in the
following subsection.

No further specification about the constraints themselves need be given in the
design model. Details about what information is passed to the constraint before
solving it, and what information is extraced from the constraint after solving it
is a property of the solver, rather than the individual constraint.

In principle, when there is a single search routine with a current state, the
solvers communicate two key types of information to the state:

1. Satisfiability or inconsistency
2. Variable values

Other information can be extracted from the different solvers by explicit requests
expressed in the design model. Variable values are also, typically, passed from
the search state to the solvers. Thus when one solver, say FD, instantiates a
variable, this information is made available to all the other solvers.

3.2 Constraints Which Propagate Domain Information

Information Exported. We first consider finite domains and global FD con-
straints. The relevant issues for hybrid algorithms are

– what information can be extracted from the solver
– under what conditions all the information has been extracted from the solver:

i.e. the extracted information entails the constraint, so can we be sure that
a state which appears to be feasible for the other subproblems and their
solvers is also guaranteed to be consistent with the FD solver.

The answers are as follows:

– Information that can be extracted from the solver includes upper and lower
bounds on the variables, domain size and if necessary precise information
about which values are in the domain of each variable. The solver also reports
inconsistency whenever a domain becomes empty.

– All the information has been extracted from a constraint when it is entailed
by the current (visible) domain information. An FD solver can sometimes
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detect when this is the case and “kill” the constraint. Until then, the con-
straint is still “active”. Therefore active constraints are ones which, to the
FD solver’s knowledge, are not yet entailed by the domains of the variables.
Some FD solvers don’t guarantee to detect this entailment until all the vari-
ables have been instantiated. Many FD solvers support reified constraints,
which have a boolean variable to flag entailment or disentailment (inconsis-
tency with the current variable domains).

The domain, inconsistency and entailment information are all logical conse-
quences of the FD constraints and input variable domains. For this reason, no
matter what other constraints in other subproblems are imposed on the vari-
ables, this information is still correct. In any solution to the whole problem, the
values of the FD variables must belong to the propagated domains. Inconsistency
of the subproblem, implies inconsistency of the whole problem. If the variable
domains entail the subproblem constraints, then they are still entailed when the
constraints from the rest of the problem are considered.

Global Constraints. Notice that global constraints are often themselves im-
plemented by hybrid techniques, even though the information imported and
exported is restricted to the above. For example a feasible assignment may be
recorded internally, so as to support a quick consistency check, or to speed up
the propagation algorithm. An interesting case of hybridisation is the use of con-
tinuous variables in global constraints. The classic example is a global constraint
for scheduling, where resource variables are FD, but the task start time variables
could be continuous. As far as I know the hybrid discrete/continuous scheduling
constraint is not yet available in any CP system.3

Interval Constraints. For interval constraint solvers only upper and lower
bounds, and constraint entailment are accessible. The problem with continu-
ous constraints is that they are not necessarily instantiated during search. Since
continuous variables can take infinitely many different values, search methods
that try instantiating variables to all their different possible values don’t neces-
sarily terminate. Instead search methods for continuous values can only tighten
the variable’s bounds, until the remaining interval associated with the variable
becomes “sufficiently” small.

Not all values within these small intervals are guaranteed to satisfy all the
constraints. Indeed there are common cases where, actually, there are no feasible
solutions, even though the final intervals appear prima facie compatible. One
vivid example is Wilkinson’s problem (quoted in [Van98]). It has two constraints:
∏20

i=1(X + i)+P ×X19 = 0 and X ∈ [−20.4..−9.4]. When P = 0 the constraints
have 11 solutions (X = −10 . . .X = −20), but when P differs infinitesimally
from 0 (viz. P = 2−23), it has no solutions!

For these reasons “answers” returned by search routines which associate small
intervals with continuous variables are typically conjoined with a set of undecided
constraints, which must be satisfied in any solution.
3 CP scheduling will be covered in more detail later.
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3.3 Linear Constraints

Underlying Principles. A linear constraint solver can only handle a very
restricted set of constraints. These are linear numeric constraints that can be
expressed in the form Expr ≥ Number or Expr ≤ Number. The expression
on the left hand side is a sum of linear terms, which take the form Coefficient
× Variable. The coefficients, and the number on the right hand side, are either
integers or real numbers [Wil99].

Linear constraint solvers are designed not only to find feasible solutions, but
also to optimise against a cost function in the form of another linear expression.

In the examples in this chapter we shall typically write the linear constraints
in the form Expr ≥ Number, and assume that the optimisation direction is
minimisation.

Whilst much less expressive than CP constraints, they have a very important
property: any set of linear constraints, over real variables, can be tested for global
consistency in polynomial time. This means we can throw all the linear constraint
of a problem into the linear solver and immediately determine whether they are
consistent.

By adding just one more kind of constraint, an integrality constraint that
requires a variable to take only integer values, we can now express any problem in
the class NP. (Of course the consistency problem for mixed linear and integrality
constraints - termed MIP, for “Mixed Integer Programming” - is NP-hard).

The primary information returned by the linear solver is consistency or incon-
sistency among the set of linear constraints. However for building cooperative
solvers we will seek more than this.

Firstly the solver can also export an optimal solution - assuming throughout
this section that the cost function is linear. In general there may be many optimal
solutions, but even from a single optimum we now have a known optimal value
for the cost function. No matter how many other constraints there may be in
other solvers, the optimal value cannot improve when they are considered, it can
only get worse. Thus the linear solver returns a bound on the cost function.

Linear constraints are special because if S1 and S2 are two solutions (two
complete assignment that satisfy all the linear constraints), then any assignment
that lies on the line between S1 and S2 is also feasible. For example if X = 1,
Y = 1 is a solution, and so is X = 4 and Y = 7, then we can be sure that X = 2
and Y = 3 is a solution, and so is X = 3 and Y = 5. Moreover since the cost
function is linear, the cost of any solution on the line between S1 and S2 has a
cost between the cost of S1 and the cost of S2.

These properties have some important consequences. Supposing Expr ≥
Number is a constraint, and that at the optimal solution the value of Expr
is strictly greater than Number. Then the problem has the same optimal value
even if this constraint is dropped (or “relaxed”). Otherwise you could draw a line
between a new optimal solution and the old one, on which all points are feasible
for the relaxed problem. Moreover the cost must decrease continuously towards
the new optimum solution. Therefore at the point where this line crosses the line
Expr = Number (i.e. at the first point where the solution is also feasible for the
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original problem) the cost is less than at the old optimal solution, contradicting
the optimality of the original solution.

In short, for a linear problem all the constraints which influence the optimal
cost are binding at an optimal solution, in the sense that the expression on the
left hand side is equal to the number on the right.

Shadow Prices and Dual Values. If such a binding constraint was dropped,
then the relaxed problem typically would have a new optimum value (with a
solution that would have violated the constraint). Along the line between the
old and new optimum, the cost function steadily improves. Instead of relaxing
the constraint we can decrease the number on its right hand side so as to partially
relax the constraint. As long as the constraint is still binding, at the new optimum
the expression on the left hand side is equal to the new number on the right hand
side. We can measure how much the optimum value of the cost function improves
as we change the number on the right hand side of the constraint. This ratio is
called the “shadow price” of the constraint.4

Indeed using the shadow price we can relax the constraint altogether, and
effectively duplicate it in the optimisation function. If λ is the shadow price
then dropping Expr ≥ Number and adding λ × (Number − Expr) to the cost
function, we have a new problem with the same optimum solution as the old one.

There is another very interesting way to approach the very same thing. If we
have a set of linear constraints of the form Expr ≥ Number, we multiply each
constraint by a positive number and we add all the constraints together, i.e. we
add all the multiplied left hand sides to create a new expression SumExpr and we
add all the multiplied right hand sides to get a new number SumNumber, then
SumExpr ≥ SumNumber is again a linear constraint. Surprisingly everything
you can infer from a set of linear constraints you can get by simply performing
this one manipulation: forming a linear combination of the constraints.

In particular if you multiply all the constraints by their shadow prices at
the optimum, and add them together the final right hand side is the optimum
cost, and the left hand side is an expression whose value is guaranteed to be
smaller than the expression defining the cost function. Indeed of all the linear
combinations of the constraints whose left hand side is dominated by the cost
function, the one formed using the shadow prices has the highest value on the
right hand side.

We call the multipliers that we use in forming linear combinations of the
constraints dual values. Fixing the dual values to maximize the right-hand-side
expression SumNumber is a way of finding the optimal cost. At the optimal
solution, the dual values are the shadow prices.

Simplex and Reduced Costs. In the section on Underlying Principles, above,
we showed that at an optimal solution the set of tight constraints are the only
4 Technically the shadow price only takes into account those constraints which were

binding at the current optimal solution. If at the new optimal solution for the relaxed
problem another constraint became binding, then the shadow price would be an
overestimate of the improvement in the optimum value.
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ones that matter. In general if the problem has n decision variables, then it must
have at least n linearly independent (i.e. different) constraints otherwise the cost
is unbounded. Indeed there must be an optimal solution with n (linearly inde-
pendent) tight constraints. Moreover n such constraints define a unique solution.

Consequently one way of finding an optimal solution is simply to keep choosing
sets of n linearly independent constraints, making them tight (i.e. changing the
inequality to an equality), and computing their solution until there are no more
such sets. Then just record the best solution. In fact this can be made more
efficient by always modifying the current set into a new set that yields a better
solution.

We can rewrite an inequality constraint as an equation with an extra (positive)
variable, called the “slack” variable. The n slack variables associated with the n
tight constraints are set to zero. If there are m inequality constraints, the total
number of variables (decision variables and slack variables) is m + n. The other
m variables are constrained by m equations, and we say they are basic variables.

An optimal solution can be found by a hill climbing algorithm (the “Simplex”
algorithm) which at each steps swaps one variable out of the basis and another
in. The variables swapped into the basis is computed using a function called
the reduced cost. For each current basis, a reduced cost can be computed for
each non-basic variable, and any variable with a negative reduced cost has the
potential to improve the solution. Another variable is chosen to be swapped out,
and if the swap indeed yields a better solution, then the move is accepted. When
no non-basic variable has a negative reduced cost the current solution is optimal.

Information Exported from the Linear Constraint Solver. The informa-
tion that can be extracted from a linear constraint solver is as follows:

– An optimal bound on the cost variable, a shadow price for each constraint,
and a reduced cost for each problem variable. Additionally one solution with
optimal cost can be extracted from the solver.

– The solver reports inconsistency whenever the linear constraints are incon-
sistent with each other

Upper and lower bounds for a variable X can be elicited from a linear solver
by using X and −X in turn as the cost function. However these bounds are
computationally expensive to compute, and even for linear constraints, the FD
solver typically computes bounds much more cheaply.

Unlike the FD solver, there is no problem of consistency of the constraints
inside the solver, but the problem remains how to ensure these are consistent
with the constraints in other solvers.

3.4 Propositional Clause Solvers and Set Solvers

Proposition clause solvers are usually called SAT solvers. SAT solvers are typi-
cally designed to find as quickly as possible an instantiation of the propositional
(i.e. boolean) variables that satisfies all the clauses (i.e. constraints). Many SAT
solvers, such as zChaff [ZMMM01], generate nogoods, expressed as clauses.
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The challenge, for hybridising a SAT solver with other solvers is to interrupt
the SAT solving process - which in general includes an exponential-time search
procedure - before it has necessarily found a solution, to extract useful infor-
mation from it, and to return it to the same state as when the SAT solver was
invoked.

Information that can be extracted from a SAT solver is as follows:

– Nogood clauses
– Feasible solutions (in case the solver terminates with success before being

interrupted)
– Inconsistency (in case the solver terminates with failure before being inter-

rupted)

Set solvers typically only handle finite sets of integers (or atoms). Their be-
haviour is similar to FD solvers, except they propagate upper and lower bounds
(i.e. the set of element that must belong to the set, and the set of elements that
could still belong to the set. The set cardinality is typically handled as an FD
variable.

Information that can be extracted from a set solver is as follows:

– Upper and lower bounds
– Set cardinality
– The solver reports inconsistency whenever the upper bound ceases to be a

superset of the lower bound

All the variables in a SAT solver are booleans. Set solvers also can be trans-
formed into a representation in terms of boolean variables (associate a boolean
variable with each value in the upper bound, setting those already in the lower
bound to one, and setting the cardinality to the sum of the booleans).

3.5 One-Way Constraints, or Invariants

Informally, a one-way solver is simply a solver that evaluates a function each time
any of its argument values are changed, and returns the new result. The imple-
mentatio challenge is to evaluate the function very quickly, using the previous
result and just computing the impact of the changes.

Historically constraint programming is related to theorem proving, and con-
straint programs are often thought of as performing very fast logical inferences.
Thus, for example, from the constraints X = 2 + Y and Y = 3 the constraint
program infers X = 5, which is a logical consequence.

Nevertheless there is information exported from constraint solvers which is
very useful for guiding search but has no logical interpretation. One-way solvers
can propagate and update such heuristic information very efficiently.

For many problems it is often useful to export a tentative value for a variable.
This has no logical status, but is also very useful for guiding heuristics. This may
be the value of the variable in a solution to a similar problem, or it may be the
value of the variable in the optimal solution of a relaxed version of the problem.
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In a decomposition where the variable belongs to more than one new subproblem,
the tentative value may be its value in a solution of one subproblem.5

Now if variable Y has tentative value 3, and the (functional) constraint X =
2 + Y is being handled by a one-way solver, then the tentative value of X will
be set by the solver to 5. If the tentative value of Y is then changed, for some
reason, to 8, then the tentative value of X will be updated to 10.

A one-way solver, then, computes the value of an expression, or function, and
uses the result to update the (tentative) value of a variable. A one-way solver
can also handle constraints by reifying them, and then updating the value of
the boolean associated with the constraint. This enables the programmer to
quickly detect which constraints are violated by a tentative assignment of values
to variables.

If a variable becomes instantiated, the one-way solver treats this as its (new)
tentative value, and propagates this to the tentative values of other variables as
usual.

Information that can be extracted from a one-way solver is as follows:

– Tentative values for variables.
– Constraints violated by the tentative assignment

4 Communicating Solvers

We introduce this section with a diagram showing the standard types of in-
formation communicated between solvers. Obviously there are many forms of
communication not shown in this diagram. For example if SAT represents set
membership through boolean variables, then it can communicate with Set. How-
ever this would have to be explicitly introduced in the design model via additional
channeling constraints, introduced below in section 4.1. Secondly the communi-
cation of bounds information illustrated in this diagram is redundant. As long
as the em IC solver is there, it can forward bounds changes between FD and em
linear. However not all design models include an IC solver, and in this case the
direct communication between FD and linear is needed.

Constraint solvers can cooperate by sharing lemmas about the problem, or
by sharing heuristic information. A lemma, from the CP viewpoint, is just a
redundant constraint that can be used by the other solver to help focus and
prune search. These lemmas can take many different forms: they may be nogoods,
cutting planes, generated rows, fixed variables, tightened domains, propagated
constraints, cost bounds, and even reduced costs [FLM04].

Some lemmas are logical consequences of the problem definition: these include
global cuts and cost bounds. Other lemmas are valid only on the assumption
that certain extra constraints have been imposed (during search). Validity in
this case means that the problem definition conjoined with the specified extra
constraints entail the lemma. A typical example is the information propagated
5 Indeed a variable may have several tentative values, but we shall only consider a

single tentative value here.
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Fig. 1. Communicating Solvers

during search by a bounds consistency algorithm. Naturally this information is
only true for those parts of the search space lying below the search tree node
where the information was inferred.

Heuristic information can also be global or local. Global heuristic information
includes the number of constraints on a variable, an optimal solution to the
linear relaxation problem at the “root” node of the search tree. Local heuristic
information might include the size of the variables domains at a certain point
during search, or the shadow prices of the linear constraints at the current node
in the branch and bound search tree.

The key difference between lemmas and heuristic information lies in the con-
sequences of errors.

If the heuristic information is out of date, or wrong, then the algorithm per-
formance may be affected but the solution produced by the algorithm remains
correct. However if lemmas are wrong, then the algorithm will generally yield
some wrong answers.

4.1 Channeling Constraints

The same problem often needs to be modelled using different variables and con-
straints for efficient handling in different solvers. The n-queens problem for ex-
ample can be modelled by n variables each with domain 1..n, where each variable
represents a queen in a different row, and each value represents the column in
which that queen is placed. This is ideal for FD solvers, and disequations. It can
also be modelling by n2 zero-one variables, one for each square on the board.
This is best for integer linear constraints where a constraint that two queens can-
not share a line is encoded by constraining the sum of all the boolean variables
along the line to be less than or equal to one.

All CSP problems can be transformed to SAT problems, using the same map-
ping of FD variables to booleans. Some researchers hope to achieve such high
performance for SAT solvers that this transformation will prove the best way to
solve all CSP problems [AdVD+04].
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SAT can perform very competitively on some typical puzzles and simple
benchmarks. However the programmer has a great deal of control over FD search
which is both a disadvantage (because SAT search is automatic) and an advan-
tage because the programmer can tune the search to the problem at hand.

CSP problems can also be transformed to integer/linear problems, and some
mathematical programmers believe that all such problems can be formulated (as
a design model) in such a way that the integer/linear solver offers the fastest so-
lution method. Whilst there is some truth in this claim, there are many problems
and puzzles for which CP outperforms the best integer/linear models designed
to date.

The point here is that all the different kinds of solvers - FD, interval, inte-
ger/linear, SAT, set - are sometimes more suitable and sometimes not so suitable
as other solvers, and to date we have discovered no way of inferring from the
conceptual model which will be the best.

Indeed it is our experience that, although for a specific problem instance one
solver will be fastest, for most problem classes different solvers do better on
different problem instances. Moreover in solving a single problem instance, there
are different stages of the problem solving process when different solvers make
the fastest progress.

Consequently the most robust algorithm, achieving overall good performance
with the best worst-case performance, is a combination of all the solvers, where
constraints are posted to all the solvers which can handle them. Good perfor-
mance is achieved because the solvers communicate information with each other.
To make this communication possible we require channeling constraints that en-
able information exported by one solver, expressed in terms of the variables
handled by the solver, to be translated into information expressed in terms of a
different set of variables that occur in another solver [CLW96].

The behaviour of a channeling constraint between an FD variable and its re-
lated boolean variables is not very mysterious. If variable V has domain 1..n, and
there are n boolean variables, B1 which represents V = 1, B2 which represents
V = 2 etc., then we have the following propagation behaviour:

– If Bi is instantiated to 1 then propagate V = i
– If Bi is instantiated to 0 then propagate V �= i
– If V is instantiated to i then propagate Bi = 1
– If the value i is removed from the domain of V , then propagate Bi = 0

To complete the channeling constraints we add the constraint
∑

i Bi = 1, which
reflects that V takes one, and only one, value from its domain.6

Channeling constraints support communication between FD, interval, linear,
SAT and set solvers. Note that they can also be useful when two design models
of the same problem are mapped to the same solver. As a simple example the
same n-queens problem can be modelled with a queen for every row, and a queen
for every column. Let QRi denote the position (i.e. column) of the queen in row
i, and let QCm denote the position (i.e. row) of the queen in column m. The
channeling constraints are as follows:
6 For mathematical programmers, the Bi comprise an SOS set of type one.
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– If QRi takes the value m, then propagate QCm = i.
– If QCj takes the value n, then propagate QRn = j
– If m is removed from the domain of QRi, then propagate QCm �= i
– If n is removed from the domain of QCj , then propagate QRn �= j

For standard models and FD implementations, the combined model, with chan-
neling constraints, has better search behaviour than either of the original or dual
model.

4.2 Propagation and Local Cuts

Let us now assume that we have one search routine which posts constraints
on the variables at each node of the search tree. These constraints are then
communicated to all the solvers through channeling constraints, and each solver
then derives some information which it exports to the other solvers. The other
solvers then use this information to derive further information which is in turn
exported, and this continues until no more new information is produced by any
of the solvers.

In this section we shall discuss what information is communicated between
the solvers, and how it is used.

Information Communicated to the Linear Solver. When the domain of
an FD variable changes, certain boolean variables become instantiated (either
to 1 or to 0), and these values can be passed in to the linear solver. (Note that
interval solvers use a different form of channeling discussed later in this section.)

The importance of this communication is worth illustrating with a simple
example. Consider the constraints X ∈ 1..2, Y ∈ 1..2 and Z ∈ 1..2, and
alldifferent([X,Y,Z]). In the linear solver this information is represented us-
ing six boolean variables X1, X2, Y1, Y2, Z1, Z2 and five constraints

∑
i Xi = 1,∑

i Yi = 1,
∑

i Zi = 1, X1 + Y1 + Z1 ≤ 1, X2 + Y2 + Z2 ≤ 1. This immedi-
ately fails in both the FD and the linear solvers. Suppose now we change the
problem, and admit Z = 3. The linear solver determines that there is a solution
(e.g. X = 1, Y = 2, Z = 3), but infers nothing about the values of X , Y or
Z.7 The FD solver immediately propagates the information that Z = 3, via the
channeling constraint which adds Z3 = 1 to the linear solver.

Sometimes FD variables are represented in the linear solver as continuous
variables with the same bounds. In this case only bound updates on the FD
variables are passed to the linear solver. An important case of this is branch and
bound search, when one of the solvers has discovered a feasible solution with a
certain cost. Whilst linear solvers can often find good cost lower bounds - i.e.
optimal solutions to relaxed problems that are at least as good as any feasible
solution - they often have trouble finding cost upper bounds - i.e. feasible but not
necessarily optimal solutions to the real problem. The FD solution exports a cost
upper bound to the linear solver. This can be used later to prune search when,
7 The linear solver can be persuaded to infer more information only by trying to

maximise and minimise each boolean in turn, as mentioned earlier.



Hybrid Algorithms in Constraint Programming 15

after making some new choices, the linear cost lower bound becomes greater
than this upper bound. This is the explanation why hybrid algorithms are so
effective on the Progressive Party Problem [SBHW95, RWH99]. CP quite quickly
finds a solution with cost 13, but cannot prove its optimality. Integer/linear
programming easily determines the lower bound is 13, but cannot find a feasible
solution.8

Not all constraints can immediately be posted to an individual solver. A
class of constraints identified by Hooker [HO99] are constraint with the form
FD(X) → LP (Y ). In this simplified form the X are discrete variables, and FD
is a complex non-linear constraint on these variables. Finding an assignment
of the variables that violates this constraint is assumed to be a hard problem
for which search and FD propagation may be suitable. Once the variables in X
have been instantiated in a way that satisfies FD, the linear constraint LP (Y )
is posted to the linear solver. If at any point the linear constraints become in-
consistent, then the FD search fails the current node and alternative values are
tried for the FD variables. Assuming the class of FD constraints is closed un-
der negation, we can write -FD(X) for the negation of the constraint FD(X).
This syntax can be used both to express standard FD constraints, by writing -
FD(X)→ 1 < 0, (i.e. -FD(X) → false), and standard LP constraints by writing
true → LP (Y ).

Constraints involving non-linear terms (in which two variables are multiplied
together), can be initially posted to the interval solver, but as soon as enough
variables have become instantiated to make all the terms linear the constraint can
be sent to the linear solver as well. In effect the linear constraint is information
exported from the interval solver and sent to the linear solver. Naturally this kind
of example can be handled more cleverly by creating a version of the original
nonlinear constraint where the non-linear terms are replaced by new variables,
and posting it to the linear solver. When the constraint becomes linear, this
should still be added to the linear solver as it is logically, and mathematically,
stronger than the version with the new variables.

For the workforce scheduling problem we can use several hybrid design models
linking finite domain and integer/linear constraints. We can, for example, use
the FD solver to choose which employees perform which tasks.

We can link these decisions to the linear solver using Hooker’s framework, by
writing “If task i and task j are assigned to the same employee then task i must
precede task j”. We also need a time period of tij to travel from the location of
task i to that of task j. Thus if task i precedes task j we can write Sj ≥ Si + tij ,
where Si is the start time of task i, and Sj that of task j.

Now the linking constraint FD(X) → LP (Y ) has

– FD(X) = assign(taski, Emp) ∧ assign(taskj, Emp), and
– LP (Y ) = Sj ≥ Si + tij

8 Though Kalvelagen subsequently modelled this problem successfully for a MIP
solver.
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Information Exported from the Linear Solver

Cost Lower Bounds. For minimisation problems, we have seen that cost upper
bounds passed to the linear solver from the FD solver can be very useful. Cost lower
bounds returned from the linear solver to the FD solver are equally important.

Hoist scheduling is a cyclic scheduling problem where the aim is to minimise
the time for one complete cycle [RW98]. FD can efficiently find feasible schedules
of a given cycle, but requires considerable time to determine that if the cycle
time is too short, there is no feasible schedule. Linear programming, on the
other hand, efficiently returns a good lower bound on the cycle time, so by
running the LP solver first an optimal solution can be found quite efficiently by
the FD solver. Tighter hybridisation yields even better algorithm efficiency and
scalability [RYS02].

Returning to the workforce scheduling example, another approach is to use
the full power of integer/linear programming to solve TSPTW (Traveling Sales-
man Problem with Time Windows) subproblems and return the shortest route
covering a set of tasks. In this case we have a linking constraint for each em-
ployee, empn. Whenever a new task is added to the current set assigned to empn

the implication constraint sends the whole set to the integer/linear solver which
returns an optimal cost (shortest route) for covering all the tasks.

This is an example of a global optimisation constraint (see [FLM04]). Global
optimisation constraints are ones for which special solving techniques are avail-
able, and from which not only cost lower bounds can be extracted, but also other
information.

Reduced Costs. One very useful type of information is reduced costs. As we
have seen, a single FD variable can be represented in the linear solver as a set
of boolean variables. When computing an optimal solution, the LP solver also
computes reduced costs for all those booleans which are 0 at an optimum. The
reduced costs provide an estimate of how much worse the cost would become if
the boolean was set to 1. This estimate is conservative, in that it may underes-
timate the impact on cost.

If there is already a cost upper bound, and the reduced cost shows that setting
a certain boolean to 1 would push the cost over its upper bound, then we can
conclude that this boolean must be 0 - this is termed variable fixing in the math-
ematical programming community. Via the channeling constraints this removes
the associated value from the domain of the associated FD variable. Reduced
costs therefore enable us to extract FD domain reductions from the linear solver.

Reduced costs can also be used for exporting heuristic information. A useful
variable choice heuristic termed max regret is to select the variable with the
greatest difference between its “preferred” value, and all the other values in its
domain. This difference is measured in terms of its estimated impact on the
cost, which we can take as the minimum reduced cost of all the other booleans
representing values in the domain of this variable.

Relaxed Solution. The most valuable heuristic information exported from the
linear solver is the relaxed solution which it uses to compute the cost lower
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bound. This assignment of values to the variables is either feasible for the whole
problem - in which case it is an optimal solution to the whole problem - or it
violates some constraints. This information can then focus the search on “fixing”
the violated constraints. Most simply this can be achieved by instantiating one
of the variables in the violated constraints to another value (perhaps the one
with the smallest reduced cost). However a more general approach is to add
new constraints that prevent the violation occurring again without removing
any feasible solutions.

Fixing Violations by Adding Cuts. To fix the violation we seek a logical combi-
nation of linear constraints which exclude the current infeasible assignment, but
still admits all the assignments which are feasible for this constraint.

If this is a conjunction of constraints, then we have a global cut which can
be added to the design model for the problem. An example of this is a subtour
elimination constraint, which rules out assignments that are infeasible for the
travelling salesman problem.

If it is a disjunction, then different alternative linear constraints can be posted
on different branches of a search tree. When, for example, an integer variable is
assigned a non-integer value, say 1.5, by the linear solver, then on one branch
we post the new bound X ≤ 1 and on the other branch we post X ≥ 2.

The challenge is to design these constraints in such a way that the alternation
of linear constraint solving and fixing violations is guaranteed, eventually, to
terminate.

Fixing Violations by Imposing Penalties. There is another quite different way to
handle non-linear constraints within a linear constraint store. Instead of posting
a new constraint, modify the cost function so that the next optimal solution of
the relaxed problem is more likely to satisfy the constraint. For this purpose
we need a way of penalising assignments that violate the constraint, in such a
way the penalty reduces as the constraint becomes closer to being satisfied, and
becomes 0 (or negative) when it is satisfied.

With each new relaxed solution the penalty is modified again, until solutions
are produced where the penalty function makes little, or no, positive or negative
contribution, but the constraint is satisfied. In case the original constraints were
all linear, we can guarantee that the optimum cost for the best penalty function
is indeed the optimum for the original problem. This approach of solving the
original problem by relaxing some constraints and adding penalties to the cost
function is called “Lagrangian relaxation”.

Information Imported and Exported from the One-Way Solver. The
one-way solver is an important tool in our problem solving workbench. The
solver is used to detect constraint conflicts, and thus help focus search on hard
subproblems. A simple example of this is for scheduling problems where the
objective is to complete the schedule as early as possible. FD propagation is used
to tighten the bounds on task start times. After propagation, each start time
variable is assigned a tentative value, which is the smallest value in its domain.
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The one-way solver then flags all violated constraints, and this information is
used to guide the next search choice.

For many scheduling problems tree search proceeds by posting at each node
an ordering constraint on a pair of tasks: i.e. that the start time of the second
task is greater than the end time of the first task. We can reify this ordering
constraint with a boolean that is set to 1 if and only if the ordering constraint
holds between the tasks. We can use these booleans to infer the number of
resources required, based on the number of tasks running at the same time.

Interestingly this constraint can be handled by three solvers: the one-way
solver, the FD solver and the linear solver. The linear solver relaxes the in-
tegrality of the boolean, and simply finds optimum start times. The FD solver
propagates the current ordering constraints, setting booleans between other pairs
of tasks, and ultimately failing if there are insufficient resources. The one-way
solver propagates tentative start time values exported from the linear solver
to the booleans. This information reveals resource bottlenecks, so at the next
search node an ordering constraint can be imposed on two bottleneck tasks. The
ordering constraint is imposed simply by setting a boolean, which constrains the
FD, linear and one-way solvers. This approach was used in [EW00].

The one way solver propagates not only tentative values, but also other heuris-
tic, or meta-information. It allows this information to be updated efficiently by
updating summary information rather than recomputing from scratch. This ef-
ficiency is the key contribution of invariants in the Localizer system [VM00].

For example if Sum is the sum of a set of variables Vi, then whenever the
tentative value of a variable Vk is updated, from say m to n, the one way solver
can efficiently update Sum by changing its tentative value by an amount n−m.

Earlier we discussed reduced costs. The “max regret” heuristic can be sup-
ported by using the one-way solver to propagate the reduced costs for the
booleans associated with all the different values in the domain of a variable.
MaxRegret for the variable is efficiently maintained as the difference between
the lowest and the second lowest reduced cost.

In concluding this section we can illustrate some of the forms of communica-
tion discussed above on our solver diagram.
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One-wayLinear
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Fig. 2. Explicit communication between solvers
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5 Hybrid Algorithms and Decomposed Problems

5.1 Subproblems Handled with Independent Search Routines

Global Cuts and Nogoods. A loose form of hybrid algorithm is to solve
two subproblems with their own separate search routines. Each solution to one
subproblem is tested against the other by initialising the common variables with
the solution to the first subproblem, and then trying to solve the constrained
version of the second one. Each time the second subproblem solver fails to find
a solution, this is reported back to the first subproblem solver as a nogood. The
idea is that future solutions to the first subproblem will never instantiate the
common variables in the same way.

This simple idea can be enhanced by returning not just a nogood, but a
more generic explanation for the failure in the second subproblem. If the second
subproblem is linear, then the impossibility of finding a solution to the second
subproblem is witnessed by a linear combination of the constraints SumExpr ≥
SumNumber where SumExpr is positive or zero, but SumNumber is negative.

The actual dual values which yield this inconsistency not only show the incon-
sistency of the given subproblem, but may witness the inconsistency of other as-
signments to the shared variables. By replacing the values of the shared variables
with new values, and combining the linear constraints in the second subproblem
using the same dual values we get a new linear constraint called a Benders Cut
which can be posted to the first subproblem as an additional constraint. Benders
Cuts can be used not only to exclude inconsistent subproblems, but also sub-
problems which cannot participate in an optimal solution to the whole problem
[HO03, EW01].

Constraining the Second Subproblem - Column Generation. Curiously
there is a form of hybridisation where an optimal solution to the first problem
can be used to generate “nogood” constraints on the second problem. This is
possible when any solution to the first problem is created using a combination
of solutions to the second problem.

This is the case, for example where a number of tasks have to be completed
by a number of resources. Each resource can be used to perform a subset of the
tasks: finding a set of tasks that can be performed by a single resource (a “line of
work”) is the subproblem. Each line of work has an associated cost. The master
problem is to cover all the tasks by combining a number of lines of work at
minimal cost. Given an initial set of lines of work, the master problem is to find
the optimal combination. The shadow prices for this solution associate a price
with each task. A new line of work can only improve the optimum if its cost
is less than the sum of the shadow prices of its set of tasks. Such lines of work
are then added to the master problem. They appear as columns in the internal
matrix used to represent the master problem in the LP solver. This is the reason
for the name Column Generation. This is the requirement that is added as a
constraint on the subproblem.
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This technique applies directly to the workforce scheduling problem. A pre-
liminary solution is computed where each employee performs just one task, for
which he/she is qualified. This solution is then improved by seeking sets of tasks
that can feasibly be performed by an employee, at an overall cost which is less
than the sum of the shadow prices associated with the tasks. The master problem
then finds the best combination of employee lines of work to cover all the tasks.
This optimal solution yields a modified set of shadow prices which are used to
constraint the search for new improving lines of work. This continues until there
are no more lines of work that could improve the current optimal solution to the
master problem.

5.2 Design Models for Hybrid Algorithms

We briefly list the steps in building design models for hybrid algorithms.

1. Associate constraints with solvers, and initialise variables
2. Add channeling constraints and explicit solver communication
3. Write problem decompositions, and communication between submodels
4. Specify search for each submodel

The specification of the search algorithm is a big part of writing the design
model. Search will be covered in section 6 below.

5.3 Applications

Perhaps the first hybrid application using the CP framework was an engineering
application involving both continuous and discrete variables [VC88]. The advan-
tages of a commercial linear programming system in conjunction with constraint
programming was discovered by the Charme team, working on a transportation
problem originally tackled using CP. Based on this experience we used a combi-
nation of Cplex and ECLiPSe on some problems for BA [THG+98]. This worked
and we began to explore the benefits of the combination on some well known
problems [RWH99].

Hybrid techniques proved particularly useful for hybrid scheduling applica-
tions [DDLMZ97, JG01, Hoo05, BR03, RW98, EW00]. Hybridisation techniques
based on Lagrangian relaxation and column generation were explored, as a way
of combining LP and CP [SZSF02, YMdS02, SF03].

Finally these techniques began to be applied in earnest for real applications at
Parc Technologies in the area of networking [EW01, CF05, OB04] and elsewhere
for sports scheduling [ENT02, Hen01].

6 Hybrid Search

6.1 Context

Search is needed to construct solutions to the awkward part of any combinatorial
problem. When the constraint solvers have done what inferences they can, and
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have reached a fixpoint from which no further information can be extracted,
then the system resorts to search. Our final solver illustration shows information
communicated from the solvers to the search engine.

FD

IC

SAT

Set

One-wayLinear

Search

Fig. 3. Solvers and Search

Example kinds of information communicated to the search engine are:

FD Variable domain size
IC Variable domain width

Linear Variable regret
One-way Variable tentative value

Set Possible members
SAT Variable heuristic measure

Because search is guided by heuristics, it is impossible to say a priori that
one search algorithm is more appropriate for a certain problem than another.
There is always a chance that the non-recommended search algorithm happens
to chance on an optimal solution straightaway. Moreover there are almost end-
less possibilities for search hybridisation and one cannot hope to survey them
all. The objective here is simply to paint the big picture, or create a global
map, so that different techniques can be located, and their relationships can be
understood.

6.2 Overview

We distinguish two main search methods:

– Constructive search, which adds constraints incrementally to partial
solutions

– Local search, which seeks to improve a (set of) complete assignments of
values to the variables by making small “local” changes
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Constructive Search. The simplest form of constructive search is greedy
search, which constructs a solution incrementally by adding constraints, but
never reconsiders any alternatives in the light of new information (such as a dead-
end). To achieve completeness it is necessary to explore alternative choices using
backtracking [Gas74], or memory-intensive techniques that maintain a whole
frontier of nodes yet to be explored [KZTH05].

Another form of constructive search is labelling, where the constraint added
at each step equates a variable to a specific value. Clearly labelling can also be
“greedy”.

The general form of constructive search is tree search. Under each node of the
tree, except the leaf nodes, there are several branches, and a different constraint
is added at each branch. Each branch ends at another node.

The tree is complete if the disjunction of the constraints added on the branches
under a node is entailed by the subproblem at the node. The subproblem at a
node is a conjunction of the original problem with all the constraints added on
its ancestor branches. The purpose of search is to add constraints down a branch
until the solver is guaranteed to detect if the constraints are inconsistent. This
property is called solver completeness. At each leaf of the search tree, therefore
the solver must be complete for the conjunction of problem constraints and
constraints imposed down the branch [MSW06].

Optimisation can be achieved using tree search. This could be achieved by
finding all solutions and keeping the best. However the branch and bound method
improves on this by adding, after each new solution is found, a constraint that
requires future solutions to be better than the current best one. After adding a
new constraint like this, search can continue on the original search tree - since
the constrained search tree is a subtree - or it can restart with a new search
tree [Pre99].

The branches in a search tree can be explored in different orders. So even for
complete search we can distinguish depth-first search, breadth-first, best-first,
and others [KZTH05].

A search tree can be explored completely, or incompletely. Indeed greedy
search can be seen as a form of incomplete tree search. The are many ways of
limiting the search effort, to yield an incomplete tree search. The simplest is to
stop after a specified maximum time. Similarly the number of backtracks can
be limited, or a limited amount of search credit can be allocated to the search
algorithm, and the algorithm can share that credit - which represents search
effort - in different ways among the subtrees [BBCR97]. For example beam search
is defined in Wikipedia as follows: It is a heuristic search algorithm that is an
optimization of best-first search. Like best-first search, it uses a heuristic function
to estimate the promise of each node it examines. Beam search, however, only
unfolds the first m most promising nodes at each depth, where m is a fixed
number, the “beam width.”

Local Search. For local search we need to associate with each complete assign-
ment a value which we will call its price. The simplest form of local search is
Monte Carlo search, which just tries different complete assignments at random,
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and just keeps the ones with the highest price. Hill climbing introduces the con-
cept of a neighbour. Each neighbour of a complete assignment A is nearly the
same as A up to a local change. The hill climbing algorithm moves from an assign-
ment A to one of its neighbours B if B has a higher price than A. Hill-climbing
stops when the current assignment has no neighbours with a higher price. There
are variants of hill climbing where “horizontal” moves are allowed, and variants
where at each step the neighbour with the highest price is chosen [SR95].

The simplest kind of local change is to change the value of a single vari-
able. (This can be seen as the local search equivalent of labelling.) For con-
strained problems special local changes are introduced which maintain the con-
straint, such as the two- and three- swaps used for the travelling salesman prob-
lem. Sometimes complex changes are used which involve several sequential local
changes, for example in Lin and Kernighan’s TSP algorithm [LK73]. Ultimately,
as for example in variable neighbourhood search the change may not be local at
all [MH97].

The drawback of hill climbing is that it stops on reaching a “local optimum”
which may be far worse than the global optimum. Many forms of local search
have been introduced which are designed to escape from local optima. Some of
these can work with just one complete assignment, such as Simulated Anneal-
ing and Tabu search [BK06]. Others work on a whole population of solutions,
combining them in various ways to yield (hopefully) better solutions. Examples
include genetic algorithms, ant colony optimisation and several other methods
which are inspired by nature [BK06].

6.3 Benefits of Search Hybridisation

The benefits of hybrid search are similar to the benefits of hybrid constraint
solving:

– Derive more information about feasibility
– Derive more information about optimality
– Derive more heuristic information

In principle tree search is useful for providing information about feasibility, and
local search for providing information about optimality. Local search is also an
excellent source of heuristic information.

Probably the best illustration of the potency of hybrid search algorithms is to
look at the currently best-performing algorithms on well-known benchmarks such
as vehicle routing [HG05], and job shop scheduling [EDU04]. The best solutions
to complex real-world benchmarks such as the ROADEF problems [ROA07] are
also hybrid.

Ideally this section would also include a guide to writing design models for
expressing a wide variety of hybrid search techniques. The nearest there is to
such a modeling formalism is perhaps the Comet language [VM05], which is
more a programming language than a modelling language. The reason is that as
yet it has not been possible to design a design modeling formalism for hybrid
search which combines precision with a high level of abstraction.
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6.4 Hybrid Solvers and Search

In this section, we will start by exploring how hybrid constraint solvers feed
information to a non-hybrid constructive and local search.

Constructive Search. Clearly all the active solvers perform inference at each
node of the search tree, inferring new information from the extra constraint
posted on the previous branch.

In addition to inferring logical information, the solvers can export heuristic
information. The FD solver can export domain sizes and the linear solver can
export reduced cost information to be used for a max regret variable choice
heuristic.

Moreover the linear relaxed solution exported from the linear solver, may be
propagated onto other variables by the one-way solver, and the new tentative
values can contribute to constraint violations of measurable size. This can serve
as another variable choice heuristic.

To this point we have made little mention of value choice heuristics. One
source of value choice heuristics is the previous solution, in a changed problem
which results from modifying the previous one. Another source is a solution to
a relaxed (typically polynomial) subproblem, such as the subproblem defined
by the linear constraints only. Let us suppose there are different value choice
heuristics exported to the solver. When the heuristics agree, this is a pretty
powerful indicator that the heuristic value is the best one.

Limited Discrepancy Search [HG95] is an incomplete constructive search
method where only a limited number of variables are allowed to take non-
preferred values. An idea due to Caseau is only to count the preferences when we
are confident about the heuristic [CLPR01]. Using multiple value choice heuris-
tics, we only count discrepancies from the heuristic suggestion when the different
value choice heuristics agree. This agreement can also be used as a variable choice
heuristic: label first those variables whose value choices we are confident of.

Local Search. One important mechanism for escaping from local optima, in a
local search algorithm, is to increase the penalty of all constraints violated at
this local optimum. This changes the optimisation function until the assignment
is no longer a local optimum [VT99]. The global optimum can eventually be
found by hill-climbing when the constraint penalties are just right.

We have already encountered the requirement to find the right penalties in
an LP framework: Lagrangian relaxation. The penalty optimisation is often per-
formed by a local improvement technique termed subgradient optimisation.

We have essentially the same technique within a local search setting
[SW98, CLS00]. It would be interesting to characterise the class of problems
for which ideal constraint penalties exist, that have a gradient at every point.
Clearly LP problems have this property, but are there larger classes?

6.5 Loose Search Hybridisation

Constructive then Local Search. The simplest and most natural form of
search hybridisation is to use a constructive search to create an initial solution,
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and then to use local search to improve it. Local search routines need an initial
solution to start with, and the quality of the initial solution can have a very
significant impact on the performance of the local search. Constructive search is
the only way an initial solution can be constructed, of course! Typically a greedy
search is used to construct the initial solution, and constraint propagation plays a
very important role in maximising the feasibility of the initial solution. However
when the domain of a variable becomes empty instead of failing the greedy
search method chooses for that variable a value in conflict and continues with
the remaining variables.

For industrial applications where constructive search is used as the heart of
the algorithm, because of its suitability for dealing with hard constraints, there
is a risk that the final solution suffers from some obvious non-optimality. If
any users of the system can see such “mistakes” in the solution constructed by
the computer, there is a loss of confidence. To avoid this, for many industrial
applications which are handled using constructive search, a local search is added
at the end to fix the more obvious non-optimalities.

For example in a workforce scheduling problem, the final solution can be
optimised by trying all ways of swapping a single task from one employee to
another and accepting any swap that improves the solution.

Local Search then Constructive. This is a rarer combination. The idea is
that the local search procedure reaches a “plain” - an area where further im-
provement is hard to achieve. Indeed statistical analysis of local improvement
procedures show a rate of improvement which decreases until new, better, solu-
tions are rarely found.

At this point a change to a complete search procedure is possible. Indeed, by
learning which variable values have proven their utility during the local search
procedure, the subsequent complete search can be restricted only to admit values
with a higher utility, and can converge quickly on better solutions than can be
found by local search [Li97].

More generally, constructive branch and bound algorithms typically spend
more time searching for an optimal solution than on proving optimality. Often
after finding an intermediate best solution, the search “goes down a hole” and
takes a long time to find a better solution. After a better solution is found,
then the added optimisation constraint enables a number of better and better
solutions are found quite quickly, because a large subtree has been pruned by the
constraint. Consequently, using local search to quickly elicit a tight optimisation
constraint can be very useful for accelerating the constructive branch and bound
search.

This combination is typically used where a proof of optimality is required.

6.6 Master-Slave Hybrids

A variety of master/slave search hybrids are applied to a didactic transportation
problem in an interesting survey paper [FLL04].
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Constructive Search Aided by Local Search. As a general principle, the
inference performed at each node in a constructive search may be achieved using
search itself. For example when solving problems involving boolean variables, one
inference technique is to try instantiating future boolean variables to 1 and then
to 0, and for each alternative applying further inference to determine whether
either alternative is infeasible. If so, the boolean variable is immediately instan-
tiated to the other value. This kind of inference can exploit arbitrarily complex
subsearches.

Local search can be used in the same way to extract heuristic information.
One use is as a variable labelling heuristic in satisfiability problems. At each
node in the constructive search tree, use local search to extend the current par-
tial solution as far as possible towards a complete solution. The initial solution
used by local search can be the local search solution from a previous node. The
variable choice heuristic is then to choose a variable in conflict in this local search
solution [WS02].

Another use as a value choice heuristic is to extend each value choice to an
optimal solution using local search, and choose the value which yields he best
local search optimum. Combining this with the above variable choice heuristic
results in a different local search optimum being followed at each node in the
constructive search tree.

A quite sophisticated example of this hybridisation form is the “local prob-
ing” algorithm of [KE02]. The master search algorithm is a constructive search
where at each node a linear temporal constraint is added to force apart two
tasks at a bottleneck. This is similar to the algorithm mentioned in Section 4.2
above [EW00]. However the slave algorithm is a local algorithm which performs
simulated annealing to find a good solution to the temporal subproblem. The
resource constraints are handled in the optimisation function of the subprob-
lem. Moreover this is a three-level hybridisation, because the local move used
by the simulated annealing algorithm is itself a constructive algorithm. This
bottom level algorithm creates a move by first arbitrarily changing the value of
one variable. It then finds a feasible solution as close as possible to the previous
one, but keeping the new value for the variable. If there is a single feasible solu-
tion constructible from the initial value assignment, then the move operator is
guaranteed to find it. This algorithm is therefore complete in the sense that it
guarantees to find a consistent solution if there is one, but it sacrifices any proof
of optimality.

Local Search Aided by Constructive Search. When neighbourhoods are
large, or if the search for the best neighbour is non-trivial, then constructive
search can be used effectively for finding the next move in a local search algo-
rithm.

One method is to use constraint propagation to focus the search for the best
neighbour [PG99]. A more specialised, but frequently occurring, problem decom-
position is to have local search find values for certain key variables, and allow
constructive search to fill in the remaining ones. Indeed the simplex algorithm
is an example of this kind of hybrid. For workforce scheduling we might use
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local search to allocate tasks to employees and constructive search to create an
optimal tour for each employee. In this hybrid form the constructive search is,
in effect, calculating the cost function for the local search algorithm.

An example of this kind of decomposition is the very efficient tabu search
algorithm for job shop scheduling described in [NS96]. A move is simply the
exchange of a couple of tasks on the current solution’s critical path. This is
extended to a complete solution using constructive search.

The “combine and conquer” algorithm [BB98] is an example of this hybrid
where a genetic algorithm is used for local search. The genetic algorithm works
not on complete assignments, but on combinations of subdomains, one for each
variable. A crossover between two candidates is a mixing and matching of the
subdomains. The quality of a candidate is determined by a constructive search
which tries to find the best solution possible for the given candidate within a
limited time.

6.7 Complex Hybrids of Local and Constructive Search

There has been an explosion of research in this area over the last decade. Papers
have been published in the LS research community, the SAT community, the
management science community and others. Some interesting collections include
The Knowledge Engineering Review, Vol 16, No. 1 and the CPAIOR annual
conference.

In this section we will review two main approaches to integrating constructive
and local search:

– Interleaving construction and repair
– Local search in the space of partial solutions

Interleaving Construction and Repair. Earlier we discussed how to apply
local search to optimise an initial solution produced by a constructive search.
However during the construction of the initial solution, the search typically
reaches a node where all alternative branches lead to inconsistent subnodes. In-
stead of completing the construction of a complete infeasible assignment, some
authors have proposed repairing the partial solution using local search [JL00].

This is applicable in case labelling used for the constructive search: extending
the approach to other forms of constructive search is an open research prob-
lem. The local search is initiated with the first constructed infeasible partial
assignment, and stops when a feasible partial assignment has been found. Then
constructive search is resumed until another infeasible node cannot be avoided.
This interleaved search continues until a feasible solution is found.

I have applied this technique in a couple of industrial applications. Each
time the neighbourhood explored by the local search has been designed in
an application-specific way. An assignment involved in the conflict has been
changed, so as to remove the conflict, but this change often causes a further
conflict, which has to be fixed in turn. This iterated fixing is similar to ejection
chains used in vehicle routing problems [RR96].
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Caseau noted that this interleaving of construction and local search yields
faster optimisation and better solutions than is achieved by constructing a com-
plete (infeasible) assignment first and then applying local search afterwards
[CL99]. Again this observation is borne out by my experience in an industrial
crew scheduling problem, where previous approaches using simulated annealing
produced significantly worse solutions in an order of magnitude longer execution
time.

Local Search with Consistent Partial Solutions. There is a long line of
research driven by the problem of what to do when a constructive search reaches
a node whose branches all lead to inconsistent subnodes.

Weak commitment search [Yok94] stops the constructive search, and records
the current partial assignment as tentative values. Constructive search then
restarts at the point of inconsistency, minimising conflicts with the tentative
values, but where conflict cannot be avoided, assigning new values to them.
Each time a dead-end is reached the procedure iterates. Theoretical complete-
ness of the search procedure is achieved by recording nogoods. An incomplete
variant is to forget the nogoods after a certain time, effectively turning them
into a tabu list.

Another related approach - which was introduced at the same conference -
is to commit to the first value when restarting, and then try to label variables,
as before, in a way consistent with the tentative variables. In this way all the
variables eventually become committed, and completeness is achieved by trying
alternatives on backtracking [VS94].

More recently, however, researchers have been prepared to sacrifice complete-
ness, but have kept the principle of maintaining consistent partial solutions. In
this framework a local move is as follows

1. Extend the current partial solution consistently by instantiating another
variable

2. If no consistent extension can be found, uninstantiate a variable in the cur-
rent partial solution

This approach was used in [Pre02], and termed decision repair in [JL00].
This framework can be explored in many directions:

– What variable and value choice heuristics to use when extending consistent
partial solutions

– What propagation and inference techniques to use when extending consistent
partial solutions

– What explanations or nogoods to record when a partial solution cannot be
extended

– What variable to uninstantiate when a partial solution cannot be extended

In principle this framework can be extended to allow inconsistent partial solu-
tions as well. With this tremendous flexibility almost all forms of search can be
represented in the framework, from standard labelling to hill climbing [PV04].
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7 Summary

Hybrid techniques are exciting and an endless source of interesting research
possibilities. Moreover they are enabling us to take great strides in efficiency and
scalability for solving complex industrial combinatorial optimisation problems.

Unpredictability is perhaps the greatest practical problem we face when solv-
ing large scale combinatorial optimisation problems. When we first tackled the
hoist scheduling problem using a hybrid FD/linear solver combination, what
really excited me was the robustness of the algorithm for different data sets.

The downside is that it is hard to develop the right hybrid algorithm for the
problem at hand. The more tools we have the harder it is to choose the best
combination [WS02].

I believe that after an explosion of different algorithms, frameworks such as
that of [PV04] will emerge and we will have a clear oversight of the different
ways of combining algorithms. Eventually, a very long time in the future, we
may even be able to configure them automatically. That is the holy grail for
combinatorial optimisation.
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Abstract. A number of different satisfaction and optimisation combinatorial 
problems have recently been approached with constraint programming over the 
domain of finite sets, for increased declarativity and efficiency. Such problems 
where one tries to find sets of values that satisfy some conditions, often present 
much symmetry on variables and values. In particular, the social golfers 
problem encompasses many possible symmetries. Allowing symmetric 
solutions increases search space unnecessarily, thus multiplying solution time. 
Therefore, ordering constraints have been proposed and incorporated in set 
solvers. However, such constraints are imposed statically in the global problem 
model and are unable to detect symmetries that still occur in sub-problems after 
a partial labelling. In this paper we discuss how to overcome this and present an 
approach that sequentially labels variables avoiding such symmetries by 
dynamically disallowing the assignment of other values from the same 
equivalence class in the golfers problem. Experimental results show that this 
approach outperforms previous ones, recently achieved by the constraint 
programming community, namely over sets. Unfortunately, the current method 
is incomplete and may loose solutions. Nevertheless, results are correct and 
show that similar techniques can be used efficiently to obtain faster solutions. 

1   Introduction 

A number of different satisfaction and optimisation combinatorial problems have 
recently been approached with constraint logic programming (CLP) over the domain 
of finite sets (CLP(Sets)). In fact, such problems are naturally expressed with set 
constraints, and recent advances on constraint propagation over this particular domain 
allowed an efficient solving where other techniques, such as integer linear 
programming, were inadequate or could not obtain good results. 

This kind of problems, where one tries to find sets of values that satisfy some 
conditions, often presents much possible symmetry on variables and values, which 
can be swapped and still maintain the solution valid. Allowing symmetric solutions 
increases search space unnecessarily, thus multiplying solution time, possibly by 
orders of magnitude. The mere use of set variables automatically allows the removal 
of some symmetry as opposed to other finite domains. Nevertheless, much symmetry 
is still possible and, therefore, ordering constraints have been proposed and 
incorporated in set solvers. However, such constraints are imposed statically in the 
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global problem model and are unable to detect important symmetries that still occur in 
sub-problems after a partial labelling. To overcome this source of inefficiency much 
research has been recently devoted to (static and dynamic) symmetry breaking in 
general and, in particular, to the social golfers problem [5,7,9,10-12,14,22,24,25,27]. 

In this paper we present and discuss an example approach that treats the golfers 
problem globally and sequentially labels variables avoiding such symmetries by 
disallowing the assignment of considered equivalent values, which are calculated 
dynamically, in a similar way to GE-trees [26]. 

We start by briefly discussing set reasoning approaches and evolution of CLP(Sets) 
solvers in the next section. Then, in section 3, we show two example benchmark 
applications and present results, discussing the applicability of such solvers and how 
symmetry is handled. In section 4 we show how equivalence classes of values can be 
applied to break symmetry in the golfers problem, and present compared results that 
show the effectiveness of this technique. Finally, we conclude in the last section. 

2   Set Reasoning 

Set constraint solving has been proposed in [23] and formalised in [13] with ECLiPSe 
(http://eclipse.crosscoreop.com/eclipse/) library Conjunto, specifying set domains by 
intervals whose lower and upper bounds are known sets ordered by set inclusion. 
Such bounds are denoted as glb (for greatest lower bound) and lub (least upper 
bound). The glb of a set variable S can be seen as the set of elements that are known 
to belong to set S, while its lub is the set of all elements that can belong to S. Local 
consistency techniques are then applied using interval reasoning to handle set 
constraints (e.g. equality, disjointness, containment, together with set operations such 
as union and intersection). Conjunto proved its usefulness in declarativeness and 
efficiency for NP-complete combinatorial search problems dealing with sets, 
compared to constraint solving over finite integer domains. 

Afterwards, another ECLiPSe set constraints solver library, Cardinal [2-4], 
improved on Conjunto by extending propagation on set functions such as cardinality. 

Recently, a set solver based on reduced ordered binary decision diagrams 
(ROBDD) was proposed [15,19], that may compactly represent a set domain 
considering only the effective set instances that it may assume (instead of a set 
interval, that can include an exponentially larger than desired number of possible 
values). ROBDD operations then allow building efficient domain propagators 
eliminating intermediate variables, being able to reason more globally. This led to 
significant improvements over other CP approaches on a comparison that their 
authors performed. 

In the next sections we present models and results using such solvers. As usual, 
these solvers are not complete, which means that generally a search phase must still 
occur after posting all constraints, in order to find a solution or prove its impossibility. 
This search process of labelling set domain variables is usually performed differently 
from labelling integer variables, where each possible value is directly assigned. With 
set domains, it is possible to achieve less commitment, by trying to successively 
include or exclude set elements, instead of assigning a definite set at once, which may 
lead to more failures. So, when instantiating set variable S (with domain [glbS,lubS]), 
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each value of lubS\glbS will be tried for inclusion or exclusion, until S is ground. This 
can be done with 2 different strategies: 1) trying inclusion first (which we call 
“element in set” strategy as in [19]); or 2) trying exclusion first (“element not in set”). 

Often, variables to label are chosen in increasing order of their domain sizes (first-
fail heuristic). With sets, this procedure may recalculate the next variable to refine, 
after each element inclusion or exclusion from the current set variable (and respective 
propagation), according to the new domains. 

3   Example Applications 

In this section we discuss modelling and solving of CSPlib (www.csplib.org) 
problems 44 (Steiner triples) and 10 (social golfers) with set reasoning. These typical 
applications for set constraint solving are the motivating examples to the introduction 
of the equivalence classes approach to remove symmetries, described in section 4, 
where we apply it to the social golfers problem. 

3.1   Steiner Triples 

The ternary Steiner problem of order n consists of finding a set of n.(n-1)/6 triples of 
distinct integer elements in U = {1,…,n} such that any two triples have at most one 
common element. It is a hyper-graph problem coming from combinatorial 
mathematics [21] where n modulo 6 has to be equal to 1 or 3 [17,20]. One possible 
solution for n=7 is {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 
6}}. The solution contains 7*(7-1)/6 = 7 triples. Steiner Triple Systems (STS) are a 
special case of Balanced Incomplete Block Designs (BIBD).  In fact, a STS with n 
elements is a BIBD(n, n.(n-1)/6, (n-1)/2, 3, 1).  

A CP(Sets) approach directly models this problem by representing each triple as a 
set variable with upper bound U and cardinality 3, and constraining the cardinality of 
each intersection of a pair of triples to be not greater than 1. Furthermore, since set 
elements are automatically ordered, much symmetry is naturally eliminated. 
Nevertheless, symmetry still occurs, since any 2 sets (triples) in a solution can be 
swapped without affecting it. For that reason, usually CP(Sets) models add ordering 
constraints on the sets variables. 

Since these solvers are not complete, a search phase must still be used to find a 
completely instantiated solution, and the way to do this may be critical on the 
computation time. Good heuristics for the order in which variables are picked for 
assignment and for the order in which values are assigned are then essential. For that, 
one should study the mathematical properties of the problem to find the best strategy. 
For example, each element must belong to exactly (n-1)/2 triples [8]. With this 
information, a labelling strategy of deciding, for each element in turn, which are the 
(n-1)/2 triples containing it may drastically reduce computation times. Different 
simple CP approaches (e.g. [6,13,15,19]) often do not go beyond n=15, but may go up 
until n=31, in times under 10 minutes, even using such heuristics and global 
constraints. In addition, best results are obtained with different labelling strategies, 
and some smaller instances may remain unsolved. All this shows how labelling 
strategies are crucial in this sort of problems, according to the propagation used. This 
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is so much so, that, in fact, a backtrack-free labelling for this problem is possible, and 
the solution is available on the internet (perso.wanadoo.fr/colin.barker/lpa/sts.htm and 
[1])! A labelling method is described based on the mathematical properties of the 
problem and the fact that Steiner triple systems can be constructed from a Latin 
square. One can then easily solve instances for n in the order of 1000 and more. We 
included this example in this paper not only to warn about this fact, which seems to be 
mostly unknown to the CP community, but also to show the importance of labelling 
based on the mathematical study of the problem to be solved. 

The labelling phase is especially crucial for satisfaction problems where one tries 
to find a single solution, which is the case that is already solved. Constraints may still 
be useful in optimisation where one has to explore the whole search space. For that, 
the ROBDD approach of [19] finds all (30) solutions for n=7 in 0.1 seconds, and all 
(840) solutions for n=9 in 22.5 seconds. But, in fact, all solutions for each of these 2 
instances are basically the same: a solution can be obtained from another simply by 
renumbering some values. It has been shown that (up to isomorphism) there is a 
unique solution for these 2 instances [8], which shows the importance of breaking 
symmetries. 

3.2   Social Golfers 

As taken from CSPlib: “The coordinator of a local golf club has come to you with the 
following problem. In her club, there are 32 social golfers, each of whom play golf 
once a week, and always in groups of 4. She would like you to come up with a 
schedule of play for these golfers, to last as many weeks as possible, such that no 
golfer plays in the same group as any other golfer on more than one occasion.” 

The problem generalizes to that of scheduling g groups of s golfers over w weeks, 
such that no golfer plays in the same group as any other golfer twice (i.e. maximum 
socialization is achieved). Thus, the golfers problem, given values g-s-w, can be 
formally defined as finding a set, Weeks, of sets, for the golfers in Golfers, such that: 

GolfersgrpsgGolferswWeeks
wkgrp

Weekswk =∀∧×=∧=
∈

∈ U## . (1) 

))(#(# 21121,2,1 ∅=∩∧=∀∧=∀ ≠∈∈ ggsggwk ggwkggWeekswk . (2) 

1)(# 21221121,2,1 ≤∩∀∀∀ ∈∈≈∈ ggwgwgwwWeeksww . (3) 

Actually, the disjointness condition (g1∩g2=∅) in (2) is redundant in face of the 
others. 

The optimisation problem corresponds to maximising w, given g and s. 
A CP(Sets) approach can model the g-s-w satisfaction problem with w*g set 

variables of cardinality s, and if a solution is found try to increment w iteratively, until 
there are no more solutions. 

Again, much symmetry occurs in this problem since any 2 week variables can be 
swapped, as well as any 2 groups in the same week, and even 2 values in the whole 
solution (e.g replacing value 1 with 2, and vice-versa, using integers to represent 
golfers). 
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In this section we compare 4 CP approaches to this golfers problem: Cardinal, 
ic_sets and ROBDD, together with a more elaborate symmetry breaking approach 
[18] using ILOG integer solver (www.ilog.com/products/solver), which we refer to as 
Symm. ROBDD represents the ROBDD-based set domain solver with merged 
constraints and no intermediate variables; ic_sets is the ECLiPSe library for a solver 
over sets of integers (cooperating with lib(ic), a hybrid integer/real interval arithmetic 
constraint solver), using a set ordering constraint that had to be implemented using 
reified constraints. Let us see how each one copes with the mentioned symmetries. 

All 4 approaches order groups in each week with appropriate constraints. In 
particular, the ROBDD model uses a global constraint on the whole week, which 
partitions it from the set of golfers and simultaneously orders the groups. Cardinal 
just uses #< on the minimum of 2 sets, cooperating with the integer solver, thanks to 
the Cardinal facility to constrain set functions, and making use of the knowledge that 
sets to be ordered (groups) have each 4 elements and are disjoint. Thus, in each week, 
for 2 groups, G1 and G2, G1 comes before G2 iff min(G1) < min(G2). 

Weeks can be ordered by comparisons on the first group. Cardinal did not adopt 
these ordering constraints since, in general, it led to poorer execution times. 

Symm ordering constraints apply globally to row and column symmetries on a 
Boolean matrix model, achieving more propagation. 

As for value symmetry, and as mentioned in [18], some values can be fixed a 
priori. E.g. for problems with 4 groups of 3 golfers, since initially there is no 
difference between the possible values, the first week can be fixed as: 

{ {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} }. 

Then, values of one group (which cannot play together anymore) can be fixed in 
other weeks as e.g.: 

{ {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} } 
{ {1,?,?}, {2,?,?}, {3,?,?}, {?,?,?} } 
{ {1,?,?}, {2,?,?}, {3,?,?}, {?,?,?} } 

and so on, for the remaining weeks. Symm forces these values and refers to such 
constraints as basic symmetry breaking constraints. Cardinal also adopts this initial 
assignment of values. This makes no difference in finding a first solution since these 
values would come up naturally as the first values assigned, due to the modelled 
constraints and the usual ascending value labelling order. But in optimisation 
problems, or when proving that there is no solution, a lot of backtracking is avoided. 

Table 1 shows the results obtained with these 4 approaches for the same instances 
of [18] and [19] (Cardinal: Pentium 4, 2.4 GHz, 480 Mb RAM; ic_sets and ROBDD: 
Pentium-M 1.5 GHz, all 3 with a 10 minutes time limit, whereas Symm ran on a 1 
GHz Pentium III, 256Mb RAM, for a maximum of one hour on each instance). 
Shaded rows indicate instances with no possible solution. Times on these rows 
represent the time needed to prove it. 

All 3 CLP(Sets) approaches use the “element in set” labelling. Cardinal and 
ROBDD obtained the best results with a first-fail heuristic, while ic_sets and Symm 
used sequential labelling. 

Here, ROBDD obtains the best results due to its higher propagation having no 
intermediate variables, which greatly reduces search space. ROBDD is the only 
approach to solve all these instances, although Symm has alternative models (based on 
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Table 1. Time results (in seconds) of different CP approaches for social golfers 

g-s-w Cardinal ic_sets ROBDD Symm 
4-3-5 165.63 ⎯ 44.4 0.27 
4-3-6 94.67 ⎯ 29.6 0.30 
5-3-6 ⎯ ⎯ 2.0 367.00 
5-3-7 ⎯ ⎯ 28.4 ⎯ 
5-4-2 0.83 5.3 0.1 0.07 
5-4-3 1.89 9.3 0.5 0.12 
5-4-4 3.13 10.5 1.3 0.20 
5-4-5 28.65 267.3 4.4 0.84 
5-5-7 ⎯ ⎯ 0.4 19.30 
6-3-6 1.20 2.7 2.5 ⎯ 
6-4-2 1.75 35.5 0.2 0.20 
6-4-3 4.62 59.2 2.3 0.34 
6-5-4 ⎯ ⎯ 171.5 2.01 
7-4-2 2.82 70.3 0.6 7.70 
7-4-3 6.37 113.6 3.5 0.50 
7-4-4 12.46 135.8 21.8 ⎯ 
7-4-5 17.18 ⎯ 54.7 ⎯ 
8-3-5 1.01 4.1 6.6 ⎯ 
8-5-2 ⎯ ⎯ 3.1 24.70 
9-4-4 42.45 22.7 338.4 ⎯ 

different orderings) [18] that can solve the remaining instances. The presented Symm 
results correspond to its best model (i.e. the one that can solve more instances). Other 
models can fill the gaps but then leave other instances unsolved, which shows the 
importance of using different strategies. Thus, in general, results are very dependent on 
“luck”, according to each specific instance. Even with the more consistent ROBDD, 
results fluctuate a bit, and are still far from corresponding to each problem model size. 
When applying sequential labelling, ROBDD does not obtain a solution in 4 instances. 

The fact is that much symmetry is still hidden and not taken into account, as we 
will see in the next section. 

4   Breaking Symmetries with Equivalence Classes of Values 

Inspired in the examples above, showing the importance of labelling and symmetry 
according to the properties of the problem, in this section we discuss and present an 
approach using equivalence classes of values to break symmetries, which we apply to 
the social golfers problem with a sequential labelling. 

4.1   Examples and Definitions 

In the example of the previous section for problems with 4 groups of 3 golfers, we 
have seen that we could start from an initial fixed configuration as: 

{ {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} } 
{ {1,?,?}, {2,?,?}, {3,?,?}, {?,?,?} } 
{ {1,?,?}, {2,?,?}, {3,?,?}, {?,?,?} } 
… 
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We could fix the first week because weeks are indistinguishable; we could fix 
values 1, 2 and 3 in the first 3 groups of other weeks because groups within a week 
are indistinguishable; and we could fix values using integers from 1 to 12 because 
values are indistinguishable. Furthermore, this was done in a way that the imposed 
ordering constraints remain valid. 

We can now ask: is that all we can do? Could we fix more values? In fact, the first 
group of the second week can be fixed as {1,4,7} so that we now have: 

{ {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12} } 
{ {1,4,7}, {2,?,?}, {3,?,?}, {?,?,?} } 
{ {1,?,?}, {2,?,?}, {3,?,?}, {?,?,?} } 
… 

The reason why this is possible is because, after assigning value 1 to the group, 
values 2 and 3 (former partners of 1) become impossible, and we need to assign two 
other values that must come from two other different groups of the first week. Since 
there is no reason to differentiate between the 3 groups {4,5,6}, {7,8,9}, and 
{10,11,12}, we may pick the first 2, and from these, pick the first element, since, at 
this point, there is no reason to differentiate values inside these groups. The first 
possible groups and first (smallest) values are chosen to make it the lexicographically 
first group among the remaining possible combinations of values. (The fixing of this 
group was actually already performed in the Cardinal model of the previous section.) 

From this point on, the situation is not that simple, since if we continue to 
sequentially assign to each group the first possible value, we would first assign 5 and 
8 to group 2, to obtain {2,5,8}, and then {3,6,9} to the third group, which would lead 
to having only 10,11, and 12 as possible values to the last group, which is impossible. 
Since there is a solution to the problem, what went wrong? 

What happens is that value 5 cannot be forced to be part of the second group, since 
now not all values in this set domain are indistinguishable. Although it is easy to see 
that 5 is indistinguishable from its former partner 6, it is not so in relation to value 10, 
for instance. The reason is that a former partner of 5 has already been assigned in this 
week (value 4). So, assigning value 5 now results in having assigned already 2 
elements of a former group (all of which must be distributed throughout the whole 
week), while values from group {10,11,12} still have no assignment in this week, 
which may make it harder to obtain a solution, since 3 different groups must be found 
for them, and the week is getting “shorter”. 

But we have seen that 5 is indistinguishable from 6, so, if value 5 is tried and no 
solution is obtained, there should be no backtracking to value 6, since it will lead to a 
failure for the same basic reasons. The same happens with values 10, 11 and 12 – they 
are indistinguishable since they belong to the same group and have not been used 
anymore. We can also see that value 8 is indistinguishable from 9 and, in fact, these 
are also indistinguishable from 5 (and consequently from 6), since they share the 
same characteristics: they are partners of a golfer which has already been assigned in 
the current week. 

There are thus 2 equivalence classes of indistinguishable values at this point: 
{5,6,8,9} and {10,11,12}. Therefore, only 2 values (at most) need to be tried to check 
whether a solution exists. When trying each class, the first value can be tried so that 
eventual ordering constraints remain valid. 
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What is it then that, in general, makes two values indistinguishable in the social 
golfers problem? What we have seen so far, takes into account values already 
assigned to previous weeks and previous groups (if we consider a week to be a 
sequence of groups), as well as values already assigned to the current group. It thus 
makes sense to consider classes of values in a sequential labelling context. For that, 
we model the g-s-w social golfers problem with a sequence of groups Sij as 
<S1,1,S1,2,…S1,g,S2,1, S2,2,…S2,g,… Sw,1,Sw,2,…Sw,g>, where i is the week index and j the 
group index, and each Sij is a set, also seen as a sequence, of s golfers. We refer to the 
nth element of Sij as Sij(n). 

In a sequential labelling of weeks, groups and group elements, we define 
Dom(i,j,n) to be a domain of possible values for Sij(n) in position given by i,j and n, as 
below, according to: values already assigned in the week, Assigned(i,j,n); current 
group partners, GPartners(i,j,n); and all former partners of these, Ps(i,j,n): 

)})()((:{),,( 11,111,1 xnSnsjnsjxnjiAssigned jinj =∧+×<+×∃= . (4) 

})(:{),,( 1,1 xnSxnjiGPartners jinn =∃= < . (5) 

)}(:{),( ,1,11 vxSxSvxivPartners jijijii ≠∧∈∧∈∃∃= < . (6) 

U
),,(

),(),,(
njiGPartnersv

ivPartnersnjiPs
∈

= . 
(7) 

)),,(),,((\),,( njiPsnjiAssignedGolfersnjiDom ∪= . (8) 

where we represent Golfers as the set of integers ranging from 1 to g*s, and 
Partners(v,i) is the set of partners of golfer v in all weeks before i. 

We consider two values of a domain of golfers to belong to the same class, when 
adding an element to a group, when they have the following 2 counts in common: 

1- number of partners from those in the domain 
2- number of partners from those already assigned to the week 

which we may now formally define as follows. 
Two values, v1 and v2, of Dom(i,j,n), are said to be equivalent, or symmetrical, on 

assignment to the nth element of group Si,j when both (9) and (10) below apply: 

)),,(),((#)),,(),((# 21 njiDomivPartnersnjiDomivPartners ∩=∩ . (9) 

)),,(),((#)),,(),((# 21 njiAssignedivPartnersnjiAssignedivPartners ∩=∩ . (10) 

Condition (9) differentiates class {5,6,8,9} from {10,11,12} of the example above. 
We explain the necessity of condition (10) with the following example: consider the 
3-2-3 problem instance when trying to label S3,2(2) as: 

{ {1,2}, {3,4}, {5,6} } 
{ {1,3}, {2,5}, {4,6} } 
{ {1,4}, {2,?}, {?,?} } 

At this point, only values 3 and 6 are possible, but only value 6 leads to a solution. 
Condition (9) does not differentiate them since their partners are, respectively, {1,4} 
and {4,5}, none of these sets sharing a partner with the current domain. The reason 
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why they are not indistinguishable is that one (value 3) has already 2 partners (1 and 
4) assigned in this week, whereas the other (value 6) has only one partner already 
assigned (4), thus leaving more possibilities to the rest of the groups. 

The two conditions are both thus necessary conditions of indistinguishability, 
although their conjunction is not assured to be a sufficient condition, for this 
particular problem, as we confirmed later. 

We thus consider equivalence classes of symmetrical values in a similar fashion as 
GE-trees [26], but with our own dynamic ad-hoc notion of symmetrical values, which 
may include two non-symmetrical (but similar) values in the same equivalence class. 

4.2   Algorithm 

The basic algorithm to solve a g-s-w golfers problem using equivalence classes (EC) 
of values can thus be defined by the 2 procedures in pseudo-code below (with 
GolfersEC(g,s,w,S) as the top goal), where S is the desired solution as a 3-dimensional 
array with the complete schedule, if successful: 

 
Procedure GolfersEC (In: g,s,w, Out: S) 
 for i from 1 to w do 
  for j from 1 to g do 
   Si,j(1) Å first_value(Dom(Si,j(1))) 
   for n from 2 to s do 
    AssignEC(S,i,j,n,Dom(i,j,n),∅) 
   end for 
  end for 
 end for 
end Procedure 

 
Procedure AssignEC (In/Out:S, In: i,j,n,Vals,Tried) 
 remove_first v from Vals yielding RestVals 
 N1 Å #(Dom(i,j,n) ∩ Partners(v,i)) 
 N2 Å #(Assigned(i,j,n) ∩ Partners(v,i)) 
 ChoicePoint 
  (<N1,N2> ∉ Tried 
   Si,j(n) Å v 
  ) or 
  AssignEC(S,i,j,n, RestVals, Tried ∪ {<N1,N2>}) 
 end ChoicePoint 
end Procedure 

 
The algorithm consists of a sequential labelling, as explained, with possible choice-
points in assignments when there are differentiated values. This is performed on 
procedure AssignEC, by verifying on backtracking whether a new value (from the 
initial domain) is of a class already tested (in which case, it will not be tried again). 
Hence, equivalence classes need not be computed at each instantiation − only if 
necessary will a value be checked for indistinguishability, by verifying the inclusion 
of its class characteristics in a set (Tried) of already tried ones. This method 
corresponds to using nogoods [16]. 
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The first week is thus automatically fixed and ordered with no possible 
backtracking, since values are indistinguishable throughout the week. Order of groups 
within weeks is assured by assigning the first possible value of the domain (which 
shortens along the week groups) with no possible backtracking, when reaching each 
first position of a group. This breaks symmetry of groups, since they could be 
permutated without affecting the solution (hence, no solution is lost here). 

An assignment fails when the domain is empty. That is when backtracking takes 
place, until a solution is found. If the search space is exhausted with no solution 
found, the procedure fails, indicating that the problem is impossible. 

This algorithm, as is, does not guarantee that weeks are sorted. That can be done 
optionally by comparisons on the first group, but the result is not necessarily better. 
To obtain a first solution, in general it is better not to force a sorting on weeks. On the 
other hand, to prove impossibility or in optimisation, where a complete search is 
needed, it is better to force this sorting since it prunes search space. In fact, our 
implementation also included this sorting, with a constraint Si,1(2) #< Si+1,1(2), for 
each week i. This can be done on the 2nd element of a first group since it is guaranteed 
that the first element will always take value 1. 

We also extended this algorithm further with two particular look-ahead 
optimizations for this problem: 

1. We considered the (fixed) last group of the first week, whose s elements must be 
spread through s different groups in subsequent weeks. Therefore, when 
assigning the last element of a group, we verify whether we have to place one of 
those (in case there are no more groups available for the yet unassigned elements 
in the current week). E.g., with 4 groups of 3 golfers, the first week is { {1,2,3}, 
{4,5,6}, {7,8,9}, {10,11,12} }. If we are to assign S2,2(3) in a 2nd week as { 
{1,4,7}, {2,5,?}, {?,?,?}, {?,?,?} }, it must be value 10 (rather than 8 or 9), 
because otherwise values {10,11,12} would not fit in this week. 

2. In each group, the s (ordered) elements must come from s different groups of the 
first week. Since the first week is completely ordered (from 1 to the total number 
of golfers), on each assignment of a group position in subsequent weeks, the 
corresponding golfer has some maximum number possible (otherwise there 
would not be enough room in the group to receive members of different groups). 
E.g., with 5 groups of 4 golfers, the first week is { {1,2,3,4}, {5,6,7,8}, 
{9,10,11,12}, {13,14,15,16}, {17,18,19,20} }. If we are to assign S2,1(2) in a 2nd 
week as { {1,?,?,?}, {?,?,?,?}, {?,?,?,?}, {?,?,?,?}, {?,?,?,?} }, it must be less than 
13. Hence, on backtracking we do not need to consider values 13 to 20, because 
such values in that position could not lead to a complete group. 

4.3   Results and Limitations 

In Table 2 we present the results in seconds of our method (EC) to find a solution (or 
exhaust search space) to each of the instances of Table 1, with a C++ implementation 
on the same 2.4 GHz machine. We reproduce the results already shown for the other 
CP approaches, for comparison. 
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Table 2. Time results of other CP approaches for social golfers in comparison with our 
Equivalence Classes method 

g-s-w Cardinal ic_sets ROBDD Symm EC 
4-3-5 165.63 ⎯ 44.4 0.27 0.01 
4-3-6 94.67 ⎯ 29.6 0.30 0.00 
5-3-6 ⎯ ⎯ 2.0 367.00 0.13 
5-3-7 ⎯ ⎯ 28.4 ⎯ 1.12 
5-4-2 0.83 5.3 0.1 0.07 0.00 
5-4-3 1.89 9.3 0.5 0.12 0.00 
5-4-4 3.13 10.5 1.3 0.20 0.01 
5-4-5 28.65 267.3 4.4 0.84 0.01 
5-5-7 ⎯ ⎯ 0.4 19.30 0.00 
6-3-6 1.20 2.7 2.5 ⎯ 0.01 
6-4-2 1.75 35.5 0.2 0.20 0.00 
6-4-3 4.62 59.2 2.3 0.34 0.00 
6-5-4 ⎯ ⎯ 171.5 2.01 0.01 
7-4-2 2.82 70.3 0.6 7.70 0.01 
7-4-3 6.37 113.6 3.5 0.50 0.01 
7-4-4 12.46 135.8 21.8 ⎯ 0.01 
7-4-5 17.18 ⎯ 54.7 ⎯ 0.02 
8-3-5 1.01 4.1 6.6 ⎯ 0.04 
8-5-2 ⎯ ⎯ 3.1 24.70 0.00 
9-4-4 42.45 22.7 338.4 ⎯ 0.01 

First of all, the reason why EC is instantaneous in exhausting search space of 
instances 4-3-6 and 5-5-7 is that they are trivially impossible as checked by the simple 
test w ≤ (g*s-1) // (s-1), which we added to our system (where // is the integer 
division). This test has a simple explanation: a golfer, x, has to play with (s-1) 
different partners in each week, and there are only (g*s-1) other golfers (as already 
noted also in CSPlib). Nonetheless, 4-3-5 is not trivially impossible, and EC exhausts 
search space with no solutions in just 1 hundredth of a second. 

EC finds a solution for all other instances also almost instantaneously (only the 5-
3-7 instance required 1.12 seconds). EC is always faster than ROBDD, generally 
outperforming it by 2 or more orders of magnitude. 

In addition, since our method performs a sequential labelling with no definite 
number of variables a priori, it handles better the optimisation problem of finding the 
maximum number of weeks. In fact, weeks are constructed sequentially and each new 
week achieved is based on the search already performed for the previous weeks. 
Hence, our approach reports, for given numbers g and s, each new improved solution 
obtained, starting from the first week until a maximum is reached, also taking into 
account the pre-computed trivial upper bound. Thus, instead of trying in turn a 
specific number of weeks, the maximum is constructed incrementally. Using this 
method, we extended results of Table 2 to the more complete and organised Table 3 
where, given g and s, an upper bound is computed and solutions keep coming (in a 
time limit of 5 minutes) until the maximum number of weeks is achieved (marked 
with √) either by reaching the upper bound or by exhausting the search space. 
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Table 3. Search for optimality with Equivalence Classes 

Groups Group 
Size 

Weeks upper 
bound 

Weeks 
achieved 

Search Space 
Exhausted 

Time 

3 5 4 √ 0.01 4 
4 5 5 √ 0.00 
3 7 7 √ 1.10 
4 6 5 √ 0.10 

5 

5 6 6 √ 0.03 
3 8 7  1.36 
4 7 6  123.01 

6 

5 7 5  6.56 
3 10 6  0.08 
4 9 6  0.05 

7 

5 8 5  0.11 
3 11 8  0.08 
4 10 5  0.02 

8 

5 9 6  15.63 
3 13 9  4.29 9 
4 11 5  0.51 

EC finds and exhausts search space in all instances with 4 and 5 groups (note that 
problems with s>g are also trivially impossible for w>1, and are not considered in this 
table). For more than 5 groups, no search was complete, but more weeks than the 
maximum values presented by the other approaches were achieved. There were even 
4 more weeks found in the instance with g-s values of 8-5, and 3 more in instances 6-
4 and 8-3 (this one in just 8 hundredths of a second). In addition to presenting new 
results, all instances were improved. 

Note that a particular instance can still be solved much faster with a specific 
labelling heuristic in a CP approach, but that heuristic will hardly be useful to a large 
set of instances. For example, using a heuristic of assigning each golfer in turn, to a 
group in every week, we obtained a 9-weeks solution for 8-4 (the original CSPlib 
problem) in 8 seconds with Cardinal. But then, many other instances remain 
unsolved: e.g. just by incrementing group size to 5, not even a 2 weeks solutions was 
then found to the 8-5 problem. EC, although seeming disappointing in this instance, is 
much less dependent on particular instances of this problem, showing a big 
consistency. 

Unfortunately, the described method is incomplete. In fact, we later found a 
counter example to the possibility that conditions (9) and (10) could be sufficient for 
indistinguishability of golfers: in instance 6-5, after running for 6 minutes, search 
space was exhausted, finding no better than 5 weeks, when a 6 weeks solution is 
known. Thus, when we exhaust search space, no better solution can be found with the 
current algorithm; we may not conclude that the optimum was reached. Nevertheless, 
obtained results are correct and even the exhaustion of search space of Table 2 entries 
correspond to real optima. The described technique can be used to obtain fast results, 
or may serve as heuristics integrated in a complete tool. We obtain good results due to 
the restricted search space, and to our look-ahead optimisations. Notice that we did 
not include instances with s=2 or with g=s in Table 2, cases where usually solutions 
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are easier to obtain (although not always). In such cases, EC is particularly fast; for 
example, for 7-7 the optimum 8-weeks solution is found and search exhausted in just 
0.12 seconds. This result has just recently been recognised as the best solution on 
Warwick Harvey's page for the social golfers problem (formerly at http://www. 
icparc.ic.ac.uk/~wh/golf/, but currently unavailable), although a solution was not 
available there. Such page reports results from several different mathematical and CP 
sources, with specialised techniques based on mathematical constructions and local 
search, for instance. Currently we cannot improve such results, but we consider that 
promising results were obtained with this research work. 

5   Conclusions and Further Research 

In this paper we presented an approach using equivalence classes of values to break 
symmetries on highly symmetric problems such as those where the goal is to find, or 
somehow optimise, a set (or sets) of undifferentiated values for a set (or sets) of 
undifferentiated entities/variables. Current CP approaches model such problems with 
a fixed number of distinct variables, each with its own domain, thus lacking flexibility 
and losing information on the similarity of variables and values. This leads to 
allowing backtracking to an unnecessary re-exploration of search spaces that share the 
same characteristics. We showed that posting ordering constraints is clearly not 
sufficient to avoid this, still leaving much symmetry behind. 

The Equivalence Classes scheme checks whether a new value in the domain is 
worth trying, by verifying whether a similar value has already been tried in that 
context. If so, then the value is simply discarded, thus breaking that symmetry and 
pruning search space. For this we introduced the notion of equivalent values on a 
dynamic execution. We applied this technique in the particular social golfers problem, 
where a sequential labelling allowed: a) an easy verification of equivalent values; b) 
immediate breaking of group symmetry (avoiding propagation); and c) the possibility 
for a solution to grow dynamically, thus facilitating solving the optimisation problem. 

Experimental results in a C++ implementation showed improvements of orders of 
magnitude over other CP approaches with efficient propagators (such as an ROBDD-
based one), namely over sets, and with global ordering constraints specially 
implemented to break symmetries [18]. Nevertheless, further comparison with other 
dynamic symmetry breaking techniques should yet be performed. 

Although the indistinguishable conditions presented for this particular problem are 
incomplete, results are all valid and extended an already large set of instances to 
improved solutions in a matter of seconds. We consider that the notion of equivalent 
values and corresponding classes has been sufficiently illustrated with this example, 
showing its importance for future research. It also shows that it may be worth to 
partly relax symmetrical conditions in order to obtain larger equivalence classes, thus 
reducing search space, even if becoming incomplete. Such relaxation may also allow 
a faster dynamic computation of symmetry and should be further explored in general 
problems. 

In future, for this particular problem, we intend to compare our method with others 
that search for all solutions, in order to better assess our search space reduction. 
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We believe this technique can be further improved since it can possibly benefit 
from other look-ahead techniques and be integrated with another CP approach using 
global constraints. 

Future research should try to find indistinguishable conditions automatically from 
problem specification. For that, modelled problem variables and values that are really 
undifferentiated, should not be given names or numbers, a priori (as usually done in 
CP and other programming approaches). More efficiency may be achieved if allowing 
more declarative models, nearer natural language, to extract only the necessary 
information, correctly interpreting things like “a set of n golfers for a set of weeks” 
(capturing the implicit symmetries and also allowing a dynamic number of variables). 
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Abstract. Traditional resources in scheduling are simple machines where the 
limited capacity is the main restriction. However, in practice there frequently 
appear resources with more complex behaviour that is described using state 
transition diagrams. This paper presents new filtering rules for constraints 
modelling the state transition diagrams. These rules are based on the idea of 
extending traditional precedence graphs by direct precedence relations. The 
proposed model also assumes optional activities and it can be used as an open 
model accepting new activities during the solving process.  

Keywords: constraint, domain filtering, disjunctive resource, state transition. 

1   Introduction 

Temporal networks play an important role in planning but they are not used as 
frequently in scheduling where resource restrictions traditionally play a stronger role. 
This is reflected in scheduling global constraints, where techniques such as edge-
finding or not-first/not-last combine restrictions on time windows with a limited 
capacity of the resource [1]. Recently, a new category of propagation techniques 
combining information about relative position of activities with capacity of resources 
appeared [4]. Also techniques combining information about precedence relations and 
time windows have been proposed [8]. We believe that integration of temporal 
networks with reasoning on resources [9,10] will play even more important role as 
planning and scheduling technologies are becoming closer. 

In this paper we propose an extension of precedence graphs by direct precedence 
relations (A can directly precede B if no activity must be allocated between A and B). 
This extension is motivated by modelling complex behaviour of resources that is 
described as a state transition diagram. Such a diagram is in fact a generalisation of 
set-up times that play an important role in current real-life scheduling problems. As 
factories are transforming from mass production to more customised production, 
multi-purpose and hence more complicated machines are used and better handling of 
setups is becoming important. Space applications are another example where a more 
complex behaviour of resources is typical. Also over-subscribed problems are more 
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frequent nowadays so the scheduling systems should be able to handle optional 
activities, for example, to decide about rejection of activity that cannot be scheduled 
feasibly together with other activities. Note also, that optional activities are useful for 
modelling alternative resources (an optional activity is used for each alternative 
resource) as well as alternative processes to accomplish a job (each process may 
consist of one of several different sets of activities). Scheduling systems should also 
be able to add activities to satisfy the transition scheme, for example to insert a setup 
activity if necessary. 

To summarise the contributions of this paper, we propose two extensions of 
ordinary precedence graphs: adding direct precedence relations and using optional 
activities. For such a graph which we call a double precedence graph we design 
incremental filtering rules that keep a transitive closure of the graph, deduce new 
precedences, and decide (in)validity of activities. Moreover, in contrast to traditional 
global constraints used in scheduling the proposed model is open, that is, it allows 
adding new activities to the precedence graph during the solution process. 

2   Motivation and Problem Description 

In this paper we address the problem of modelling a disjunctive resource where 
activities must be allocated in such a way that they do not overlap in time. We assume 
that there are precedence constraints between the activities. The precedence constraint 
A « B specifies that activity A must be before activity B in the schedule. In a 
simplified form, we can assume that each activity X is assigned a sequence number 
PX in the solution and the precedence A « B is equivalent to constraint PA < PB. Each 
activity is annotated by a resource state requested for processing the activity and there 
is a state transition diagram describing transitions between the states. State transition 
diagram is a directed graph where nodes describe the states and arcs describe allowed 
transitions between the states (Figure 1). The state transition diagram restricts 
sequencing of activities in the following way: activity A can be scheduled directly 
before activity B (PA + 1 = PB) only if there is an arc from the state of A to the state of 
B in the state transition diagram. To model over-subscribed problems and alternative 
resources/processes, we introduce optional activities. An optional activity has one of 
the following three statuses. If the activity is not yet known to be or not to be included 
then it is called undecided. If the activity is allocated to the resource then it is called 
valid. If the activity is known not to be allocated to the resource then it is called 
invalid. Regular activities correspond to valid activities. The scheduling task is to 
decide about (in)validity of the undecided activities in such a way that the valid 
activities form a sequence satisfying the precedence constraints and restrictions 
imposed by the state transition diagram. 
 
 
 
 
 
 

Fig. 1. Example of a state transition diagram 
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In real-life problems there are usually also time windows restricting position of 
activity in time. In such a case, it is known that deciding about an existence of a 
feasible schedule is NP-hard in the strong sense [7] so there is a little hope even for a 
pseudo-polynomial solving algorithm. Hence using propagation rules and constraint 
satisfaction techniques is justified here. The paper [2] shows how filtering of time 
windows can be combined with the precedence graph so in this paper we focus 
merely on handling (direct) precedence relations. Our goal is to propose filtering rules 
that remove inconsistencies from the double precedence graph. Namely, the rules 
deduce new precedence relations and decide whether an activity cannot or must be 
valid. In fact, the filtering rules implement a global constraint describing allowed 
sequences of activities. 

3   Related Works 

Disjunctive temporal networks [11] can model disjunctive resources. However, DTNs 
use more general disjunctions than necessary and hence they achieve weaker pruning. 
Moreover, a qualitative approach to time seems more appropriate to describe the 
problem of activity sequencing. Though we assume durative activities, Interval 
Algebra is superfluous because disjunctive resources discard most of the interval 
relations (like starts, during, overlaps etc.). From Point Algebra we need only ‘before’ 
and ‘after’ relations and there is no support for direct precedences there. The work by 
Laborie [9] studies a combination of resource and temporal reasoning but no 
algorithm is presented (and a different type of resources is assumed). Probably the 
closest approach to our problem is presented in paper [6] where alternative resources 
correspond to paths in the global precedence graph. However, this approach is 
proposed merely for cost-based filtering (optimization of makespan or setup times) 
and it assumes all the activities to be present in the global precedence graph. The 
paper [3] presents an idea of a precedence graph with optional activities. The authors 
use a so called PEX value to describe a probability of the existence of the activity and 
their approach is based on updating this value. Instead of that we use a Boolean 
variable to describe the presence of an activity and we focus more on precedence and 
direct precedence relations. To summarise the above discussion, none of the existing 
approaches to temporal and resource reasoning covers fully state transition diagrams 
and optional activities. 

4   Double Precedence Graphs 

The precedence relations define a precedence graph that is an acyclic directed graph 
where nodes correspond to activities and there is an arc from A to B if A « B. If 
access to all predecessors and successors of a given activity is frequently requested, 
such as in [4,8], then it is more efficient to keep a transitive closure of the graph 
where this information is available in time O(1) rather than to look for 
predecessors/successors on demand. Moreover, keeping transitive closure simplifies 
detection of cycles. We propose the following definition of transitive closure of the 
precedence graph with optional activities.  
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Definition 1: We say that a precedence graph G with optional activities is transitively 
closed if for any two arcs A to B and B to C such that B is a valid activity and A and 
C are either valid or undecided activities there is also an arc A to C in G. 

It is easy to prove that if there is a path from A to B such that A and B are either valid 
or undecided and all inner nodes in the path are valid then there is also an arc from A 
to B in a transitively closed graph (by induction on the path length). Hence, if no 
optional activity is used (all activities are valid) then Definition 1 corresponds to a 
standard definition of the transitive closure. 

To model restrictions imposed by the state transition diagram we propose to extend 
the precedence graph by direct precedence relations between the activities. 

Definition 2: We say that A can directly precede B if both A and B are either valid or 
undecided activities, B is not before A (¬ B « A), the transition from A to B is 
allowed by the state transition diagram, and there is no valid activity C such that 
A « C and C « B (the relation « is from the transitive closure of the precedence graph 
with optional activities). 

The relation of direct precedence introduces a new type of arc, say «d, in the 
precedence graph and hence we are speaking about the double precedence graph. 
There is one significant difference between the arcs of type « and the arcs of type «d. 
While the arcs « are added into the graph as problem solving proceeds, the arcs «d are 
typically removed from the graph (note that «d means “can be directly before”, while 
« means “must be before”). When all valid activities are linearly ordered, there is 
exactly one arc of type «d going into each valid activity (with the exception of the 
very first activity in the schedule) and one arc of type «d going from each valid 
activity (with the exception of the very last activity in the schedule). 

4.1   Constraint Model 

We propose to realise reasoning on precedence relations using constraint satisfaction 
technology. This allows integration of our model with other constraint reasoning 
techniques [2]. This integration requires the model to provide full information about 
precedence relations to all other constraints. We index each activity by a unique 
number from the set 1, …, n, where n is the number of activities. For each activity we 
use a 0/1 variable Valid indicating whether the activity is valid (1) or invalid (0). If 
the activity is undecided – not yet known to be valid or invalid – then the domain of 
Valid is {0,1}. The precedence graph is encoded in two sets attached to each activity. 
CanBeBefore(A) is a set of indices of activities that can be before activity A. 
CanBeAfter(A) is a set of indices of activities that can be after activity A. For 
simplicity reasons we will write A instead of the index of A. To simplify description 
of the propagation rules we define for every activity A the following derived sets: 

MustBeAfter(A) = CanBeAfter(A)  \  CanBeBefore(A) 
MustBeBefore(A)  = CanBeBefore(A)  \  CanBeAfter(A) 
Unknown(A)  = CanBeBefore(A)  ∩  CanBeAfter(A). 

MustBeAfter(A) and MustBeBefore(A) are sets of those activities that must be after 
and before the given activity A respectively. Unknown(A) is a set of activities that are 
not yet known to be before or after activity A (Figure 2). 
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To model direct precedence relations and hence a double precedence graph, we add 
two sets to each activity: CanBeRightBefore and CanBeRightAfter containing indexes 
of activities that can be directly before and directly after a given activity. Naturally, 
the following relation holds CanBeRightBefore(A) ⊆ CanBeBefore(A) at any time 
and similarly CanBeRightAfter(A) ⊆ CanBeAfter(A). 

 

Fig. 2. Representation of the precedence graph 

Note on Representation. The main reason for using sets to model the precedence 
graph is their possible representation as domains of variables in constraint satisfaction 
packages. Recall that domains of variables can only shrink as problem solving 
proceeds. The sets in our model are also shrinking as new arcs « are added to the 
precedence graph. Hence a special data structure is not necessary to describe the 
precedence graph in constraint satisfaction packages. Moreover, these packages 
usually provide tools to manipulate the domains, for example membership and 
deletion operations. In the subsequent complexity analysis, we will assume that these 
operations require time O(1), which can be realised for example by using a bitmap 
representation of the sets. Note finally, that empty domain implies inconsistency that 
may be a problem for the very first and very last activity which has no predecessors 
and successors respectively. To solve the problem we can simply leave activity A in 
both sets CanBeAfter(A) and CanBeBefore(A). Then no domain of CanBeBefore and 
CanBeAfter will ever be empty but we can detect inconsistency via the empty domain 
of Valid variables.   

4.2   Constraint Model 

The goal of propagation rules is to remove inconsistent elements (activities) from the 
above described sets – this is called domain filtering in constraint satisfaction. In the 
first stage, we will focus on making a transitive closure of the precedence graph 
according to Definition 1. Note that the transitive closure of the precedence graph also 
simplifies detection of inconsistency of the graph. The precedence graph is 
inconsistent if there is a cycle of valid activities. In a transitively closed graph, each 
such cycle can be detected by finding two valid activities such that A « B and B « A. 
Our propagation rules prevent cycles by making invalid the last undecided activity in 
each cycle. This propagation is realised by using an exclusion constraint. When a 
cycle A « B and B « A is detected, the following exclusion constraint can be posted: 

Valid(A) = 0 ∨ Valid(B) = 0. 

A 

MustBeBefore(A) 
MustBeAfter(A) 

Unknown(A) 

CanBeBefore(A) 

CanBeAfter(A) 
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This constraint ensures that each cycle is broken by making at least one activity in the 
cycle invalid. Instead of posting the constraint directly to the constraint solver, we 
propose keeping the set Ex of exclusions. The above exclusion constraint is modelled 
as a set {A,B} ∈ Ex. Now, the propagation of exclusions is realised explicitly – if 
activity A becomes valid then all activities C such that {A,C} ∈ Ex are made invalid. 

We initiate the precedence graph in the following way. First, the variables Valid(A), 
CanBeBefore(A), CanBeRightBefore(A), CanBeAfter(A), and CanBeRightAfter(A) 
with their domains are created for every activity A. Namely, the domain for Valid 
variable is {0,1} and the domain for other variables is {1,…,n}, where n is the number 
of activities. Then the known precedence relations in the form A « B are added by 
removing B from the sets CanBeBefore(A) and CanBeRightBefore(A), and removing 
A from the sets CanBeAfter(B) and CanBeRightAfter(B). Note, that because all 
activities are still undecided at this stage, domain change is not propagated to other 
variables. Finally, the Valid(A) variable for every valid activity A is set to 1 (and 
similarly Valid variables of invalid activities are set to 0). By instantiating the Valid(A) 
variable, the propagation rule /1/ is invoked. “Valid(A) is instantiated” is its trigger. 
The part after  is a propagator describing pruning of domains. “exit” means that the 
constraint represented by the propagation rule is entailed so the propagator is not 
further invoked (its invocation does not cause further domain pruning). We will use the 
same notation in all rules. The propagation rule /1/ realises the above described 
exclusion constraints as well as adding new arcs according to Definition 1. 

Valid(A) is instantiated  /1/ 
if Valid(A) = 0 then 
 Ex := Ex \ {{A,X} | X is an activity} 
   for each B do        // disconnect A from B 
   CanBeBefore(B) ← CanBeBefore(B) \ {A} 
   CanBeAfter(B) ← CanBeAfter(B) \ {A} 
  CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A} 
   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A} 
else  // Valid(A)=1 
 for each C s.t. {A,C}∈Ex do Valid(C) ← 0 
  for each B∈MustBeBefore(A) s.t. Valid(B)≠0 do 
   for each C∈MustBeAfter(A) s.t. Valid(C)≠0 do 
   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {C} 
   CanBeRightBefore(C) ← CanBeRightBefore(C) \ {B} 
    if C∉MustBeAfter(B) then //add arc from B to C 
      CanBeAfter(C) ← CanBeAfter(C) \ {B} 
    CanBeBefore(B) ← CanBeBefore(B) \ {C} 
        CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B} 
    CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C} 

       if C∉CanBeAfter(B) then    // break the cycle 
       if Valid(B)=1 then Valid(C) ← 0 
               // Valid(C)=1 leads to fail 
       else if Valid(C)=1 then Valid(B) ← 0 
          else Ex ← Ex ∪ {{B,C}} 
exit 

Note that rule /1/ maintains symmetry of sets modelling the double precedence graph 
for all valid and undecided activities because the domains are pruned symmetrically 
in pairs. We shall show now, that if the entire precedence graph is known in advance 
(no arcs are added during the solving procedure), then rule /1/ is sufficient for keeping 
the transitive closure according to Definition 1. 
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Proposition 1: Let A0, A1, … , Am be a path in the precedence graph such that 
Valid(Aj)=1 for all 1≤j≤m-1 and Valid(A0)≠0 and Valid(Am)≠0 (that is, the endpoints 
of the path are not invalid and all inner points of the path are valid). Then A0 « Am, 
that is, A0∉CanBeAfter(Am) and Am∉CanBeBefore(A0). 

Proof: We shall proceed by induction on m. The base case m=1 is trivially true after 
initialisation (we assume that for every arc (X,Y) in the precedence graph X is 
removed from CanBeBefore(Y) and Y is removed from CanBeAfter(X) in the 
initialisation phase). For the induction step let us assume that the statement of the 
lemma holds for all paths (satisfying the assumptions of the lemma) of length at most 
m-1. Let 1≤j≤m-1 be an index such that Valid(ij)←1 was set last among all inner 
points i1, … , im-1 on the path. By the induction hypothesis we get  

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) using the path i0, … , ij 
• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) using the path ij, … , im 

We shall distinguish two cases. If im∈MustBeAfter(i0) (and thus by symmetry also 
i0∈MustBeBefore(im)) then by definition im∉CanBeBefore(i0) and i0∉CanBeAfter(im) 
and so the claim is true trivially. Thus let us in the remainder of the proof assume that 
im∉MustBeAfter(i0). 

Now let us show that i0∈CanBeBefore(ij) must hold, which in turn  (together with 
i0∉CanBeAfter(ij)) implies i0∈MustBeBefore(ij). Let us assume by contradiction that 
i0∉CanBeBefore(ij). However, at the time when both i0∉CanBeAfter(ij) and 
i0∉CanBeBefore(ij) became true, that is, when the second of these conditions was 
made satisfied by rule /1/, rule /1/ must have posted the constraint (Valid(i0)=0 ∨ 
Valid(ij)=0) which contradicts the assumptions of the lemma. By a symmetric 
argument we can prove that im∈MustBeAfter(ij). Thus when rule /1/ is triggered by 
setting Valid(ij)←1 both i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold (and 
im∉MustBeAfter(i0) is assumed), and therefore rule /1/ removes im from the  
set CanBeBefore(i0) as well as  i0 from the set CanBeAfter(im), which finishes the 
proof. 

 
 

Proposition 2: The worst-case time complexity of the propagation rule /1/ 
(instantiation of the Valid variable) including all possible recursive calls is O(n2), 
where n is the number of activities. 

Proof: If activity A is made invalid then all exclusion pairs that include A are 
removed from set Ex which could be done in time O(n), if the set is properly 
implemented (for example as a symmetric n × n matrix). Moreover, activity A is 
removed from the sets CanBeBefore, CanBeAfter, CanBeRightBefore, and 
CanBeRightAfter of all other activities which takes the total time O(n). 

If activity A becomes valid then some activities are made invalid and some new 
arcs may be added to the graph. At most n activities can be invalidated which takes a 
total time O(n2). The maximal number of added arcs is Θ(n2). It may also happen that 
some other activities (at most O(n)) become invalid to break cycles. However, we 
already know that the time complexity of making an activity invalid is O(n). 
Together, the worst-case time complexity to make an activity valid is O(n2).              
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In some situations arcs may be added to the double precedence graph during the 
solving procedure, either by the user, by the scheduler/planner, or by other filtering 
algorithms [2]. The following rule /2/ updates the double precedence graph to keep 
transitive closure when an arc is added to the double precedence graph. If a new arc 
A«B is added then we first check whether the arc is not already present in the graph. 
If it is a new arc then the corresponding sets are updated and a possible cycle is 
detected (we use the same reasoning as in rule /1/). Finally, if any end point of the 
arcs is valid, then necessary arcs are added to update the transitive closure according 
to Definition 1. In such a case, some direct precedence relations are removed 
according to Definition 2. Note that the propagators for new arcs are evoked after the 
propagator of the current rule finishes. 

A«B is added  /2/ 
 if A∈MustBeBefore(B) then exit      // the arc is already present 
 CanBeAfter(B) ← CanBeAfter(B) \ {A} 

  CanBeBefore(A) ← CanBeBefore(A) \ {B} 
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A} 

  CanBeRightBefore(A) ← CanBeRightBefore(A) \ {B} 
 if A∉CanBeBefore(B) then    // break the cycle 

    if Valid(A)=1 then Valid(B)        // Valid(B)=1 leads to fail 
   else if Valid(B)=1 then Valid(A) ← 0 
             // Valid(A)=1 leads to fail 
       else Ex ← Ex ∪ {{A,B}} 
 else      // transitive closure 
  if Valid(A)=1 then 
   for each C∈MustBeBefore(A) s.t. Valid(C)≠0 do 

      CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B} 
       CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C} 
       if C∉MustBeBefore(B) then 
       add C«B 
  if Valid(B)=1 then 
   for each C∈MustBeAfter(B) s.t. Valid(C)≠0 do 

      CanBeRightAfter(A) ← CanBeRightAfter(A) \ {C} 
       CanBeRightBefore(C) ← CanBeRightBefore(C) \ {A} 
       if C∉MustBeAfter(A) then 

          add A«C 

 exit 

Again, it is possible to show that if the precedence graph G is transitively closed (in 
the sense specified by Definition 1) and arc A « B is added to G then rule /2/ updates 
the precedence graph G to be transitively closed again. Note also, that propagation 
rules /1/ and /2/ achieve global consistency concerning the precedence constraint. 
This is a direct consequence of keeping a transitive closure of the precedence graph. 

Proposition 3: If the precedence graph G is transitively closed (in the sense specified 
by Definition 1) and arc A « B is added to G then rule /2/ updates the precedence 
graph G to be transitively closed again. 

Proof: Assume that arc A « B is added into G at a moment when arc B « C is already 
present in G. Moreover assume that Valid(A)≠0, Valid(B)=1, and Valid(C)≠0. We 
want to show that A « C is in G after rule /2/ is fired by the addition of A « B. The 
presence of arc B « C implies that C∈MustBeAfter(B) (and by symmetry also 
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B∈MustBeBefore(C)). Now there are two possibilities. Either C∉MustBeAfter(A) in 
which case rule /2/ adds the arc A « C into G, or C∈MustBeAfter(A) (and by 
symmetry also A∈MustBeBefore(C)) which means that arc A « C was already present 
in G when arc A « B was added. 

The case when arc A « B is added into G at a moment when arc C « A is already 
present in G and Valid(C)≠0, Valid(A)=1, Valid(B)≠0 holds can be handled similarly. 
Thus when an arc is added into G, all paths of length two with a valid midpoint which 
include this new arc are either already spanned by a transitive arc, or the transitive arc 
is added by rule /2/. In the latter case this may invoke adding more and more arcs. 
However, this process is obviously finite (cannot cycle) as an arc is added into G only 
if it is not present in G, and no arc is ever removed from G. More on the time 
complexity of arc additions follows in Proposition 4. 

Therefore, it is easy to see, that when the process of recursive arc additions 
terminates, the graph G is transitively closed. Indeed, for every path of length two in 
G with a valid midpoint one of the arcs on the path is added later than the other, and 
we have already seen that at a moment of such an addition the transitive arc is either 
already in G or is added by rule /2/ in the next step.   

Proposition 4: The worst-case time complexity of the propagation rule /2/ (adding a 
new arc) including all recursive calls to rules /1/ and /2/ is O(n3), where n is the 
number of activities. 

Proof: If arc A«B is added and B must also be before A then one of the activities A or 
B may become immediately invalid which takes time O(n) (see Proof of Proposition 
2). If both A and B are undecided then the rule prunes sets CanBeAfter(B) and 
CanBeBefore(A) and exits without further propagation. If A is valid and B is 
undecided (or vice versa) then all predecessors of A are connected to B. There are at 
most O(n) such predecessors and the new arcs are added by recursive invocation of 
rule /2/. The recursion stops at this level because every predecessor X of a valid 
predecessor C of A is also a predecessor of A (due to the transitive closure) and hence 
the arc X«B has already been enqueued for propagation when addition of A«B was 
processed. Moreover, any duplicate copy of the same arc in the queue will be 
processed in time O(1) (see the first line of rule /2/). The “worst” situation happens 
when both A and B are valid. Then all predecessors of A are recursively connected to 
all successors of B. There are at most O(n2) such connections and processing each 
connection takes time O(n) – see the for loops in rule /2/, so the worst-case time 
complexity is O(n3).   

Proposition 5: The rules /1/ and /2/ ensure that if B « A or there is a valid activity C 
between A and B (that is, A « C and C « B) then A∉CanBeRightBefore(B) and 
B∉CanBeRightAfter(A). 

Proof: We will prove the proposition for the set CanBeRightBefore only, the set 
CanBeRightAfter is maintained symmetrically. At the beginning, the set 
CanBeRightBefore(B) contains all activities which is all right, because all activities 
are undecided. If A is deleted from CanBeBefore(B) (due to adding B « A), A is also 
deleted from CanBeRightBefore(B) in both rules /1/ and /2/. If any C becomes valid, 
A∈MustBeBefore(C), and B∈MustBeAfter(C) then A is deleted from 
CanBeRightBefore(B) in rule /1/. If a new arc A«C is added, C is valid, and 
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B∈MustBeAfter(C) then A is deleted from CanBeRightBefore(B) in rule /2/. 
Similarly, if a new arc C«B is added, C is valid, and A∈MustBeBefore(C) then A is 
deleted from CanBeRightBefore(B) in rule /2/.  

4.3   A Propagation Rule for Direct Precedences 

So far we more or less ignored the restrictions imposed by the state transition 
diagram. The reason is that these restrictions can be easily encoded by removing 
explicitly direct precedence relations from the double precedence graph. In particular, 
if transition from A to B is forbidden by the state transition diagram then arc A «d B is 
removed from the double precedence graph. In a totally ordered set of activities it 
implies that there must be some valid activity C between A and B or B must be after 
A. Actually a stronger requirement can be imposed: if A is before B (and A cannot be 
directly before B) then there must be some valid activity directly before B that is also 
after A and some valid activity directly after A that is before B. This observation can 
be transformed into the following implications: 

CanBeRightAfter(A) ∩ CanBeBefore(B) = ∅  ⇒   B « A 
CanBeAfter(A) ∩ CanBeRightBefore(B) = ∅  ⇒  B « A. 

The above reasoning can be used to deduce a new precedence constraint B « A and, 
vice versa, if A « B then we can actively look for activities between A and B, 
especially, if there is only one candidate for such activity. This reasoning is realised 
using two propagation rules. First, the direct precedence is removed using rule /3/ and 
rule /4/ is activated. Rule /4/ is then called whenever there are some changes related to 
activities A or B. This rule tries to deduce that B must be before A or if A « B then 
the rule looks for some activity C between A and B. 

A«dB is deleted  /3/ 
 CanBeRightAfter(A) ← CanBeRightAfter(A) \ {B} 

   CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A} 
 activate rule /4/ for A and B 
 exit 

CanBeRightAfter(A) or CanBeAfter(A) or CanBeBefore(A) or 
CanBeRightBefore(B) or CanBeBefore(B) or CanBeAfter(B) is changed, or 
Valid(A) or Valid(B) is instantiated  /4/ 
if Valid(A)=0 or Valid(B)=0 or A∈MustBeAfter(B) then exit 
 if CanBeRightAfter(A)∩CanBeBefore(B)=∅  
   or CanBeAfter(A)∩CanBeRightBefore(B)=∅ then 
   add B«A 
   exit 
 if A∈MustBeBefore(B) & Valid(A)=1 & Valid(B)=1 then 
  if {C}=CanBeRightAfter(A)∩CanBeBefore(B) or 
   {C}= CanBeAfter(A)∩CanBeRightBefore(B) then 
    // C is the only possible direct successor of A or 
    // C is the only possible direct predecessor of B 
    add A«C 
    add C«B 
    Valid(C) = 1 
    exit 
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If there are no explicit direct precedence relations like those imposed by the state 
transition diagram, then we already proved that propagation rules /1/-/2/ achieve 
global consistency. Unfortunately, global consistency cannot be achieved for rules 
/3/-/4/, that is, for explicitly removed direct precedence relations. Nevertheless, we 
can show that the constraint realised by rules /3/-/4/ is complete. 

Proposition 6: If all activities are either valid or invalid and the set of valid activities 
is totally ordered then this order satisfies the restrictions imposed by the state 
transition diagram. 

Proof: Assume for contradiction that there are valid activities A and B such that A is 
directly before B in the sequence but the state transition diagram forbids A to be 
directly before B. In such a case, rule /3/ has been called so B∉CanBeRightAfter(A) 
and rule /4/ is active. There is no invalid activity in CanBeRightAfter(A) due to  
rule /1/. For every valid activity C, either C « A or B « C and hence 
C∉CanBeRightAfter(A) due to rules /1/ or /2/. Recall that rule /4/ is called every time 
the set CanBeRightAfter(A) is changed. We just showed that CanBeRightAfter(A)=∅ 
and therefore also CanBeRightAfter(A)∩CanBeBefore(B)=∅. Therefore the second 
condition in rule /4/ is true and hence B « A is deduced which leads to failure. The 
rule /4/ cannot exit using the first condition because A and B are valid and A « B. The 
rule also cannot exit using the third condition because then there is a valid activity C 
such that A « C and C « B which is in contradiction with the order if activities. In any 
case, rule /4/ deduces failure so A cannot be right before B in any solution.   

Proposition 7: The worst-case time complexity of the propagation rule /4/ including 
all recursive calls to rules /1/ and /2/ is O(n3), where n is a number of activities. 

Proof: The time complexity of propagation rule /4/ alone is O(n) because the 
intersection operations may require this time. The rule can add at most four arcs and it 
can make two activities valid. According to Proposition 2, making activity valid 
requires time O(n2). According to Proposition 4 adding an arc (including all recursive 
calls) requires time O(n3). Hence the total worst-case time complexity is O(n3).   

5   Some Extensions 

5.1   Sequence-Dependent Setup Times 

The motivation for introducing direct precedence relations into precedence graphs 
was modeling sequence dependent setup times. Setup time is a time that must be 
inserted between two consecutive activities to setup the machine. If this setup time 
depends on both activities then it is called a sequence-dependent setup time. 

 
 
 
 
 

Fig. 3. Extending activity duration by setup time 
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Typically, setup time is assumed to be an empty gap between two consecutive 
activities. Our idea is to include the setup time in the duration of the second activity. 
Basically, it means that duration of each activity will consists of its real duration plus 
a setup time (Figure 3). Clearly because of time windows we still need to keep the 
original start time of the activity but we add the extended start time to model the start 
time including the setup. The extended start time can then participate in non-
overlapping constraints for disjunctive resources such as edge-finding without 
modifying these constraints (the constraints only need support for variable duration). 

The difference between the start time and the extended start time equals exactly to 
the setup time for a given activity (for the first activity, we can use a startup time). To 
find out the setup time we can use information about direct predecessors of the 
activity. Because we are working in the context of constraint satisfaction, we can use 
a binary constraint between the variable describing a direct predecessor 
(CanBeRightBefore) and the variable describing the setup time. The relation behind 
this constraint is extensionally defined – it is a list of setup times for the activity 
where index of each element corresponds to identification of the possible predecessor. 
Note finally, that these ideas can be included in filtering of times windows; we just 
need to assume variable duration of activities. 

It may seem that a more natural model to describe setups is using setup activities 
inserted between any pair of activities in the state transition diagram. Thought this is 
theoretically possible, this approach has significant practical drawbacks. The main 
problem is decoupling the setup activity from the main activity. We need to describe 
the feature that if a “regular” activity is valid then exactly one of its predecessor setup 
activities must be valid. Hence we need additional logical constraints between the 
validity variables. Moreover, if the activities participate in other constraints, like 
edge-finding, this decoupling will decrease filtering power of these constraints (the 
constraints are not aware that the setup activity “belongs” to a regular activity). 
Finally, using setup activities will significantly increase the overall number of 
activities in the system because such a setup activity must be introduced for any pair 
of regular activities that may go directly one after another. 

5.2   A Note on Open Graphs 

The double precedence graphs studied in previous sections assume that the number of 
activities or at least its upper estimate is known. We use optional activities to 
deactivate activities that will not be part of the solution. This technique is appropriate 
in scheduling applications where most activities are known and optional activities are 
used to model alternatives to be decided during scheduling. However, in planning this 
technique is less convenient because the number of activities is unknown in general. It 
is still possible to use optional activities but in this case, the total number of activities 
will be probably too large which will decrease overall efficiency. 

Our constraint model can be used directly to include new activities that will appear 
during problem solving. Recall, that we model the double precedence graph using 
difference sets, in particular the set CanBeBefore(A)\CanBeAfer(A) describes the 
activities that must be before A. We assumed that these sets are subsets of {1,…, n}, 
where n is the number of activities. To model problems where the number of activities 
is unknown in advance, we can use an infinite set {1,…,sup}, where sup is a computer 
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representation of  “plus infinity”. The activities, that are already known, are 
represented using the variable Valid and sets CanBeBefore and CanBeAfter. The 
other void activities are represented just by their indices in these sets. Hence, these 
activities behave like optional undecided activities with no precedence relations to 
activities already in the graph. Therefore, there is no propagation related to these 
activities so sets representing these activities are not changing and hence it is not 
necessary to keep them in memory (only indices of invalid activities may be deleted 
from these sets, but it does not play any role). As soon as a new activity is included in 
the precedence graph then an index is assigned to the activity and its set 
representation is created. At this time all invalid activities should be removed from 
the sets of the new activity. We only need to keep the number of activities already 
included in the precedence graph to know which index can be used. Note finally, that 
we can still use optional activities to model alternatives to be decided later. 

In addition to adding activities from outside, it is possible to use the double 
precedence graph to deduce that a new activity must be added to the graph. Notice 
that in case of open graphs, rule /4/ does actually no pruning because there can always 
be some void activities between A and B.  Nevertheless, if A « B, A cannot be 
directly before B and no existing activity is between A and B then we can deduce that 
a new activity C must be added together with the precedence relations A « C and 
C « B.  So we can take one of the void activities and make it real as described above. 
This technique might be useful especially to resolve flaws in plan-space planning.  

6   Experimental Results 

We implemented the model of the precedence graph with optional activities in 
SICStus Prolog 3.12.3 using the standard interface for the definition of global 
constraints. There are no independent benchmarks that include direct precedences so 
we present some preliminary experimental results comparing our approach with the 
constraint model from [5] using min-cutset problems. The min-cutset problem 
consists of precedence relations only and the task is to find the largest set of vertices 
such that the sub-graph induced by these vertices does not contain any cycle (or 
symmetrically to find the smallest set of vertices such that all cycles are broken if 
these vertices are removed from the graph). This problem is known to be NP-hard [7]. 
The original model uses a validity variable V and variable P indicating the absolute 
position of each activity in a sequence (its domain is {1,…,n}, where n is the number 
of activities). The precedence relation A « B is represented as a constraint 
VA * VB * PA < PB, which guarantees that there is no cycle between valid activities. 
Hence, to solve the problem, it is enough to decide the value of validity variables. In 
our model, we also need to decide only the value of validity variables; acyclic graph 
is guaranteed by keeping transitive closure. In both cases, the validity variables are 
instantiated by a standard backtracking algorithm with constraint propagation 
(branch-and-bound is used to maximize the number of valid activities). 

We use the data set from [12] to compare both models. All the problems in the data 
set consist of 50 activities but the number of precedence constraints varies. Table 1 
shows the maximal number of valid activities obtained for particular benchmarks. All 
the solutions obtained by our approach (Precedence) are optimal while the original 
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CLP model found and proved optimal solutions within the time limit of 50 minutes 
only for problems with 100 and 150 precedence constraints (the best solutions found 
within the time limit are presented for the remaining problems). The experiments run 
under Windows XP on 1.1 GHz Pentium-M processor with 1280 MB RAM. 

Table 1.  Min-cutset problems 

Benchmark P50-
100 

P50-
150 

P50-
200 

P50-
250 

P50-
300 

P50-
500 

P50-
600 

P50-
700 

P50-
800 

P50-
900 

Original 47 41 35 31 28 21 17 16 16 14 
Precedence 47 41 37 33 31 22 19 17 16 14 

Figure 4 shows the comparison of runtimes and the number of backtracks for both 
approaches. Our approach requires more than an order of magnitude less backtracks 
and less runtime to find the optimal solution. Note finally, that concerning the runtime 
we cannot compete with the GRASP heuristic proposed in [12], but this was not our 
original ambition as we tackle different problems. Moreover, opposite to the GRASP 
approach our technique is complete and, indeed, for some problems we have found 
better solutions than reported in [12]. 
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Fig. 4. Computation results on min-cutset problems (logarithmic scale) 

7   Conclusion 

We introduced a new constraint model describing precedence graphs with optional 
activities and direct precedence relations. For this model we proposed propagation 
rules that keep a transitive closure of the graph and remove inconsistencies caused by 
forbidden direct precedence relations. If explicit direct precedences are not present 
then the proposed rules achieve global consistency. We also experimentally showed 
that this model of the precedence graph is more efficient than a straightforward 
implementation of precedence relations. If explicit direct precedences, for example 
modelling state transition diagram, are present then the proposed rules realise a 
complete constraint model though the domain filtering is not complete. Rather than 
proposing a monolithic algorithm, we focused on incremental propagation of changes 
and on implementation-friendly architecture that is easy to translate into propagation 
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rules usable in existing constraint solvers. Moreover this approach is extendable to 
problems where the number of activities in unknown in advance. Because the 
proposed technology is designed for resources with more complex behaviour, we 
believe that it might be appropriate for manufacturing scheduling with complex 
resources or for space applications such as scheduling earth observations. 
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Abstract. Quantified Constraint Satisfaction Problems are consider-
ably more difficult to solve than classical CSP and the pruning obtained
by local consistency is of crucial importance. In this paper, instead of de-
signing specific consistency operators for constraints w.r.t each possible
quantification pattern, we propose to build them by relying on classical
existential propagators and a few analysis of some mathematical proper-
ties of the constraints. It allows to reuse a large set of constraints already
carefully implemented in existing solvers. Moreover, multiple levels of
consistency for quantified constraint can be defined by choosing which
analysis to use. This can be used to control the complexity of the prun-
ing effort. We also introduce QeCode, a full-featured publicly available
quantified constraint solver, built on top of Gecode.

Keywords: QCSP, Quantified Languages.

1 Introduction

Quantified Constraint Satisfaction Problems (or QCSPs) are a generalization of
classical Constraint Satisfaction Problems (CSPs) in which variables may be
quantified universally and existentially [5]. This extension is promising in the
sense that it allows to model problems that could not be modeled by CSPs like
planning under uncertainty, games or model checking. But it also increases the
complexity of solving problems, moving from NP-complete to PSPACE-complete.

In QCSPs, the classical notion of solution (an assignment of all variables that
satisfies the constraints) is replaced by the more complex notion of strategy A
strategy is a function which expresses the values taken by existentially quantified
variables in function of the preceding universally quantified ones. For example,
∀X ∈ {1, 2}∃Y ∈ {1, 2}X = Y is true because we know that we can associate a
value for Y to every value taken by X such that the constraint is true. A strategy
is a complex object and its size is exponential in the number of variables.

Intuitively, we can liken a QCSP to a two-player game : one player (called the
existential player) assigns the existentially quantified variables in order to satisfy
all the constraints, while his opponent (called the universal player) assigns the
universally quantified variables in order to violate at least one of the constraint.
Each player assigns its variables in turns in the order they appear in the QCSP.

F. Azevedo et al. (Eds.): CSCLP 2006, LNAI 4651, pp. 63–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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constraint condition action

∀x ∀y ∀z (x + y = z)

x− �= x+

y− �= y+

z− �= z+

x− + y− �= z−

=⇒
=⇒
=⇒
=⇒

false

false

false

false

∀x ∀y ∃z (x + y = z)
z− > x− + y−

z+ < x+ + y+

=⇒
=⇒
=⇒

false

false

Iz ⊆ [x− + y−, x+ + y+]

∀x ∃y ∀z (x + y = z)

z− �= z+

z− > x− + y−

z+ < x+ + y+

=⇒
=⇒
=⇒
=⇒

false

false

false

Iy ⊆ [z− − x+, z+ − x−]

∀x ∃y ∃z (x + y = z)

x− < z− − y+

x+ > z+ − y−

=⇒
=⇒
=⇒
=⇒

false

false

Iy ⊆ [z− − x+, z+ − x−]
Iz ⊆ [x− + y−, x+ + y+]

∃x ∀y ∀z (x + y = z)
y− �= y+

z− �= z+

=⇒
=⇒
=⇒

false

false

Ix ⊆ [z− − y+, z+ − y−]

∃x ∀y ∃z (x + y = z)
=⇒
=⇒

Ix ⊆ [z− − y−, z+ − y+]
Iz ⊆ [x− + y−, x+ + y+]

∃x ∃y ∀z (x + y = z)
z− �= z+ =⇒

=⇒
=⇒

false

Ix ⊆ [z− − y+, z+ − y−]
Iy ⊆ [z− − x+, z+ − x−]

∃x ∃y ∃z (x + y = z)
=⇒
=⇒
=⇒

Ix ⊆ [z− − y+, z+ − y−]
Iy ⊆ [z− − x+, z+ − x−]
Iz ⊆ [x− + y−, x+ + y+]

Fig. 1. Propagation rules for the quantified version of the addition over intervals

The truth value of the problem corresponds then to the existance of a winning
strategy for the existential player, i.e. the possibility for him to satisfy all the
constraints, whatever its opponent does.

There is a growing interest in finding efficient techniques to solve such prob-
lems despite their complexity [5,2,6,4,7,8,3,10] but still the field is very young
and for example no solver for quantified constraints is publicly available, and
there is also no publicly available sets of benchmarks. This is to be put into
perspective with the similar field of QBF where more than 15 solvers exist.

Quantified propagation will be at the heart of any efficient QCSP solver, if
any, and the difficulty is that propagators are not the same for different patterns
of quantifiers:

Example 1. Figure 1 reports quantified propagation rules for the ternary con-
straint x + y = z evaluated over intervals. Rule 8 is the only thing a CSP
reasoner might ever need to know (all the variables are existentially quantified).
Conversely, a QCSP solver should also know as many of the other rules as possi-
ble to prevent the search procedure from carrying the burden of an almost-blind
search. These rules are reported from [3], where they have been obtained through
a case-by-case, manual analysis of the semantics of each operator against each
quantification structure.
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In this paper, we propose a contribution to the design of a solver for QCSPs.
All existing approaches [5,6] have chosen to build the solver from scratch. This
makes sense since the propagator for a constraint may be very different according
to the quantification prefix associated to the constraint. But this solution is also
very demanding in term of implementation effort and does not allow to reuse
powerful constraint algorithms designed for the existential case. In what follows,
we propose to study to what extent it is possible to reuse existing work for
classical constraints in a quantified setting.

First, due to the properties of quantified propagation, the existential propaga-
tor is still correct. The only modification needed is to handle the case of reduction
of the domain of an universal variable. Then we propose to add several analysis
in order to prune more values: by using properties of the constraints like func-
tionality, by using look-ahead or by extracting information from the dual. Theses
analysis can be combined and for example, it is possible that a constraint hold
no specific property but has a negation which is functional. Then a combination
of dual and functional analysis may reveal interesting properties which yield to
early discover an inconsistency or the pruning of some values.

2 QCSPs

In this section, we first recall the main definitions concerning QCSPs and set
the notations. The definitions for QCSP we use are taken from [4], especially the
elegant notion of outcome which allows to give a simple definition of quantified
arc-consistency.

For a set D, we denote by P(D) its powerset and by |D| its cardinality. Let
V be a set of variables and D = (DX)X∈V be the family of their finite domains.
For W ⊆ V , we denote by DW the set of tuples on W , namely ΠX∈W DX . The
projection of A ⊆ D on W ⊆ V is denoted by A|W . If Y �∈ W , the extension
of a tuple t ∈ DW to t′ ∈ DW∪{Y } with t′|W = t and t′Y = a is denoted by
t : [Y = a]. A constraint c is a couple (W, T ) where W ⊆ V are the variables of c
(denoted by var(c)) and T ⊆ DW is the set of solutions of c (denoted by sol(c)).

Definition 2 (QCSP). A Quantified Constraint Satisfaction Problem (or
QCSP) is a 5-tuple Q = (V, D, q, C) where V = {X1, . . . , Xn} is a linearly or-
dered finite set of variables, D = (DX)X∈V is the family of their finite domains,
q : V → {∀, ∃} is a function which associates to each variable a quantifier and
C is a set of constraints.

For a QCSP Q = (V, D, q, C), we distinguish between its quantification struc-
ture (V, q) and its CSP part (V, D, C). In particular, we denote by QC a QCSP
composed of a quantification structure Q and a CSP C on the same set of
variables. A QCSP Q = (V, D, <, q, C) represents the closed formula q(X1) ∈
DX1 , . . . , q(Xn) ∈ DXnC where variables are numbered according to <. whose
truth value can be given by recursive evaluation against each quantifier in turn.

The presence of a quantification structure changes the notion of solution with
respect to classical CSPs. Indeed, a solution of a QCSP is no more described
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by the assignment of a value to the different variables but by the more general
notion of strategy in which every existentially quantified variable is given a value
in function of the preceding universally quantified ones (called Skolem functions).
For a quantification structure Q = (V, <, q), we denote respectively by V [Q, ∀]
and V [Q, ∃] the set of universally and existentially quantified variables of Q.
For X ∈ V , V [Q, < X ] denotes the set of variables before X in the order <.
Combinations are allowed and V [Q, ∀, < X ] denotes the set of universal variables
preceding X in Q. Formally, a strategy s for a QCSP QC is a family of functions
(sX)X∈V [Q,∃] such that sX : DV [Q,∀,<X] → DX .

Let s be a strategy. A scenario is the V -tuple formed by one branch of s,
i.e. the assignment of each ∀-variable with one of its domain value and the
corresponding evaluation of the Skolem functions for each ∃-variable. The set of
scenarios of a strategy s is denoted sce(s). A strategy is a winning strategy if all
of its scenarios satisfy all the constraints of C. The set of all winning strategies
for a QCSP QC is denoted by WIN(QC). A strategy can be described as a tree
enumerating all possibilities for universally quantified variables and giving the
value of the existentially quantified ones for every possibility.

QCSPs and CSPs are close enough to allow to reuse most of the technology,
including local consistency. A value for an ∃-variable does not have to be tested
if it does not belong to any winning strategy. In a similar way, if a value for
an ∀-variable does not belong to any winning strategy, then the problem has
no solution. These properties can be tested in some cases by local consistency,
although it provides only sufficient conditions for them. In order to define the
counterpart of arc-consistency in the quantified case, it is useful to define the
set out(QC) of outcomes of a QCSP as the union of all scenarios of all winning
strategies. A value is globally inconsistent if it does not appear in any outcome.
But finding this requires to solve the whole QCSP, making this information
pointless. Let us call quantified constraint a QCSP formed only with one single
constraint c. If a value is locally inconsistent, that is it does not appear in any
outcome of Qc, then it is also globally inconsistent. Thus it is possible to devise
propagator for quantified constraints which enjoy many of the good properties
of the classical ones [3].

A search state is a set of yet possible values for each variable: for W ⊆ V , it is
a family s = (sX)X∈W such that ∀X ∈ W, sX ⊆ DX . The corresponding search
space is SW = ΠX∈W P(DX). A consistency can be modeled as the greatest
fixpoint of a set of so-called propagators and is computed by a chaotic iteration
[1]. For a constraint c = (W, T ), a propagator is an operator f on SW

1 having
the following properties:

– monotonicity: ∀s, s′ ∈ SW , s ⊆ s′ ⇒ f(s) ⊆ f(s′).
– contractance: ∀s ∈ SW , f(s) ⊆ s.
– correctness: ∀s ∈ SW , Πs ∩ sol(c) ⊆ Πf(s) ∩ sol(c).
– singleton completeness: for all s ∈ SW such that |Πs| = 1,

Πf(s) ∩ sol(c) ⊆ Πs ∩ sol(c).
1 When iterating operators for constraints on different sets of variables, a classical

cylindrification on V is applied.
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The purpose of a propagator is to remove any value which does not occur in
any solution. For c = (W, T ), the well-known arc-consistency operator acc is
defined by: ∀s ∈ SW , acc(s) = s′ with ∀X ∈ W, s′X = (Πs ∩ T )|X . Quantified
arc-consistency ([5] and called strong quantified GAC in [8]) can be defined as
a propagator: ∀s ∈ SW , qacc(s) = s′ with ∀X ∈ W, s′X = (Πs ∩ out(Qc))|X .
Obviously, a way to perform such a pruning is to solve the constraint as a little
QCSP by enumerating all possible values in the domain of the variables. We
propose in what follows to study what can be done with less computational
efforts. In this case, the pruning may of course be weaker.

The way universally quantified variables are handled differs from existential
ones: whenever its domain is reduced, the whole problem has no solution and
inconsistency can be immediately derived.

3 Analysis

Quantified arc-consistency is powerful but costly. Indeed, it is not always possible
to enforce it without actually trying all possible values for the variables: the cost
of one exploration for a n-ary constraint with a domain size of d is at most dn [2].
This corresponds to the development of the search tree on the variables of this
constraint. Thus computing quantified arc-consistency for a global constraint
may be counter-productive as it would require to develop a large enumeration
tree that would be redundant with respect to the main search tree. Hence, the
control of the level of consistency to be applied is even more important than in
classical CSPs.

In this section, we describe four kinds of analysis that can be performed in
order to prune domain values of quantified variables. Some of these techniques
amount to perform quantified arc consistency on a relaxed version of the quan-
tified constraint as shown by the following remark:

Remark 3. Let Qc be a quantified constraint and A ⊆ DV be such that out(Qc)
⊆ A. Then the operator f defined by fX(u) = (u ∩ A)|X is correct.

Such a set A can be obtained as out(Q′c′) for a specific relaxation Q′c′ of Qc.

3.1 Existential Analysis

Existential analysis consists in applying the classical arc-consistency operator
(quantifiers are simply ignored). The only difference resides in the treatment of
universally quantified variables. Indeed, whenever the domain of an universal
variable is reduced, the problem is insatisfiable. Hence existential variables are
reduced and universal ones are used to early detect inconsistency.

In order to prove correctness of the relaxation, we introduce the following order
between two quantification structures Q = (V, <, q) and Q′ = (V, <, q′) having
the same set of variables and order: Q ⊆ Q′ iff ∀X ∈ V, q(X) = ∃ → q′(X) = ∃.
It means that some universal quantifiers may be replaced by existential ones.

Theorem 4. If Q ⊆ Q′, then out(Qc) ⊆ out(Q′c).
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Proof. Let Q and Q′ be two quantification structures such that Q ⊆ Q′. The
proof is by induction on the number of different quantifiers beetween Q and Q′.
If Q = Q′, we immediately have out(Qc) = out(Q′c). Suppose now that Q and
Q′ differ only by one quantifier, i.e. there exists a unique variable Y such that
Y is universally quantified in Q and existentially quantified in Q′. If Qc is false,
we immediately have out(Qc) = ∅ ⊆ out(Q′c). If Qc is true, then we have to
prove that every outcome of Qc is an outcome of Q′c, i.e. that it is a scenario of
a winning strategy s′ of Q′.

Let o be an outome of Qc. It belongs to a winning strategy s of Qc. Let a be
the value given to Y by o. We have s = (fX)X∈V [Q,∃] with fX being the Skolem
function taking in argument the universal variables preceding X . We build a
strategy s′ of Q′c, consisting of the following Skolem functions (f ′

X)X∈V [Q′,∃]
such that:

– ∀X ∈ V [Q′, ∃, < Y ], f ′
X = fX

– f ′
Y : DV [Q′,∀,<Y ] → DY is the constant function a

– otherwise f ′
X : DV [Q′,∀,<X] → DX maps the tuple t onto the value fX(t :

[Y = a]).

Clearly, o ∈ sce(s′) since it gives the same values to every variable. The property
is also true for every scenario of s, (it is possible to build a strategy s′ such that
o ∈ sce(s′)). For any scenario p′ of s′, the value assigned to Y is a and by
construction, p′ is also a scenario of s. Since s is a winning strategy, s′ is also
a winning strategy and we have o ∈ out(Q′c). By induction on the number of
different quantifier between Q and Q′, we can deduce this result for every Q and
Q′ such that Q ⊆ Q′. �

We define the following operator which reduces a quantified constraint according
to its existential relaxation:

Definition 5. Let Qc be a quantified constraint and Q′ = max{G | Q ⊆ G}.
We call existential consistency the operator eac(Qc) = qac(Q′c).

Note that existential concistency is strictly more powerful than usual
arc-consistency of CSPs, as it returns ∅ if the domain of a universal variable
have been touched.

Any value suppressed by this propagator would also be suppressed by quan-
tified arc-consistency:

Corollary 6. The propagator eac(Qc) is correct.

Proof. It follows from Remark 3 and Theorem 4. �

It was known in the literature [3] that quantified consistency is stronger than
existential consistency, in the sense that couples variable/value that appear in
no solution strategy of a quantified problem (and could be safely removed) can
be consistent with the same problem when all the variables are considered as
existentially quantified (hence they are not removed). We provide here a proof of
this (much expected) result, that was apparently missing in the original papers.
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Example 7. For example, consider the quantified constraint ∃X ∈ {1, 2} ∀Y ∈
{1, 2} ∃Z ∈ {1, 2, 3, 4, 5} X + Y = Z. The existential propagator reduces Z’s
domain to {2, 3, 4}. Also, if the quantified constraint was as follows: ∃X ∈
{1, 2} ∀Y ∈ {1, 2} ∃Z ∈ {1, 2} X + Y = Z, the existential propagator would
have removed 2 in the domain of Y , thus detecting inconsistency.

Though incomplete, existential consistency is a correct relaxation of quantified
consistency, so that its application is always safe. But it is incomplete with
respect to quantified arc-consistency, as shown by the following example:

Example 8. Consider the quantified constraint ∃X ∈ {1, 2} ∀Y ∈ {1, 2} ∃Z ∈
{2, 3} X + Y = Z. The existential propagator does not reduce X ’s domain.
Also, if the quantified constraint was as follows: ∃X ∈ {1, 2} ∀Y ∈ {1, 2} ∀Z ∈
{2, 3, 4} X + Y = Z, the existential propagator would not have detected incon-
sistency.

However, existential analysis is surprisingly sufficient for binary constraints. Bi-
nary constraints may have four different quantification structures: ∀∀, ∀∃, ∃∀ and
∃∃. Existential analysis performed on the last case is classical arc-consistency.
As mentioned in [7], ∀∀ and ∃∀ can be removed statically. The first case is only
true for the true constraint. In the second case, every values of the existential
variable that is not supported by all values of the universal one can be removed
and at the end, the constraint is entailed and thus can be removed from the
problem. For the remaining case, we can show the following result:

Proposition 9. Let ∀X ∃Y c(X, Y ) = Qc be a quantified constraint. Then
qac(Qc) = eac(Qc).

Proof. We only need to prove that eac(Qc) ⊆ qac(Qc). The other direction is
obtained by Corollary 6. We simply remark that a value in the domain of Y
supressed by qac is also supressed by eac and an inconsistency caused by a
reduction of X ’s domain is also detected by eac. �

This result is interesting because it shows that quantified arc-consistency is not
costly for binary constraints. Moreover, this property can be generalized to any
n-ary quantified constraint in the following way. Let us consider the following
order on quantification structures Q = (V, <, q) and Q′ = (V, <′, q) having the
same set of variables and the same quantification function: we have Q � Q′ iff
∀X, Y ∈ V, (X < Y ∧ Y <′ X) → q(Y ) = ∀. In other words, Q and Q′ differ in
that some universally quantified variables have moved to the left. For example,
∀X ∃Y ∀Z � ∀X ∀Z ∃Y .

Theorem 10. If Q � Q′, then out(Qc) ⊆ out(Q′c).

Proof. Let Q and Q′ be two quantification structures such that Q � Q′. The
proof is by induction on a path from Q to Q′ in which only one quantifier moves
at each step. So, suppose that variable Xj moves before Xi, the order in Q is
X1, . . . , Xi, . . . , Xj , . . . , Xn and the order in Q′ is X1, . . . , Xi−1, Xj , Xi, . . . , Xn.
By definition, we have q(Xj) = q′(Xj) = ∀.



70 M. Benedetti, A. Lallouet, and J. Vautard

Let o ∈ out(Qc) be an outcome such that a is the value given to Vj by o.
Then, it belongs to a winning strategy s of Qc. We build a winning strategy s′

of Q′c such that o ∈ sce(s′):

– ∀X ∈ V [Q′, ∃, < Vj ], f ′
X = fX

– otherwise, f ′
X is defined by f ′

X(t) = fX(t : [Vj = a]).

Clearly, o ∈ sce(s′) since it gives the same values to every variable. The property
is also true for every scenario of s, (it is possible to build a strategy s′ such that
o ∈ sce(s′)). For any scenario p′ of s′, the value assigned to Y is a and by
construction, p′ is also a scenario of s. Since s is a winning strategy, s′ is also
a winning strategy and we have o ∈ out(Q′c). By induction on a path of one-
quantifier moves, we have out(Qc) ⊆ out(Q′c). �

This theorem can be used to provide a relaxation for quantified constraints.
When only one universal quantifier is before existential ones, quantified arc-
consistency can be computed by using classical arc-consistency:

Proposition 11. Let Q be a quantification structure such that only the first
variable is quantified universally, then qac(Qc) = eac(Qc).

Proof. let c be a n-ary constraint on variables X1, . . . , Xn and Q the quantifica-
tion structure making X1 universal and all other variables existential. We only
need to prove that eac(Qc) ⊆ qac(Qc). Suppose that a value b has not been re-
moved from the domain of an existential variable Y in eac and is removed in qac.
Then there exists a tuple t ∈ sol(c) such that t|Y = b. With this tuple, we can
build a strategy such that fY (t|X) = b (other cases being unchanged). It means
that t ∈ out(Qc), which contradicts the hypothesis of its removal by qac. If we
suppose that a value a has not been removed from the (only universal) variable
X1 by eac, but has been removed by qac, then it means that there is both a
tuple and no tuple supporting this value, hence the contradiction. Consequently,
we have eac(Qc) = qac(Qc). �

3.2 Functional Domain Analysis

In this section we show how to infer that a quantified constraint is inconsistent
by just reasoning on some matematical properties of the constraint itself, and
on their relation to the size of the variable domains. Namely, we show how
the interaction between the quantification structure of the problem and the
functional dependencies that are possibly embedded in a constraint might lead
to an inconsistency.

Definition 12 (Functional Constraint). An n-ary constraint c is functional
on its i-th argument iff every time that c(a1, . . . , ai, . . . , an) and c(b1, . . . , bi,
. . . , bn) with ai �= bi then necessarily aj �= bj for some j �= i.

The intuition behind this definition is that the relation defining the constraint
is actually a function from the rest of the arguments onto the i-th one. If this
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function happens to be injective, we say the constraint is injectively functional.
The property of being functional is a feature of the constraint itself, and is not
dependant on the particular domain sets we consider (though a constraint that
in general is not functional can behave as a functional one on specially shaped
domains). So, each argument of each constraint needs to be labeled as functional
or non-functional just once and for all, at the time the constraint is defined.

A constraint can be functional on one, some, or all of its arguments. For
example, the ternary constraint x + y = z is functional on every argument (but
is not injective), x × y = z is only functional on z, x ≤ y is not functional, and
y = 2x is injectively functional on both arguments.

Given a functional constraint, we might be able to detect an “interference”
(between the functional dependencies in the quantification structure and the
functions in the constraint) that necessarily that generates an inconsistency when
we take into account the size of the domains.

Example 13. Consider a fragment of a quantified problem like:

∀y.∃x.C(x, y)

where C is functional on y. This means that y is a function of x in the constraint,
and that, given the prefix, x is a function of y in the whole QCSP: There is a
reciprocal functional dependency between variables with different quantifiers,
where the existential one is deeper. Each time we choose a value for y we need a
value for x that makes the constraint true. But, once the value of x is found we
can associate to it a unique value of y via C. Suppose we are in the lucky circum-
stance to always observe a consistent mutual association (if not, the constraint is
violated). Still, we are forced to associate a different value of x to every value of y
(we cannot reuse the same twice because C : x → y is a function). If we run out
of x values before the y values have been exhausted—i.e. if |D(x)| < |D(y)|—we
have a sufficient (not necessary) condition of inconsistency.

This is a special case of a more general condition captured by the following
result.

Theorem 14 (Functional Inconsistency). A sufficient condition for a quan-
tified constraint Qc(X1, . . . , Xn) to be inconsistent is:

1. The constraint is functional on Xi

2. q(Xi) = ∀
3. (

∏
Xi≺Xj ,q(Xj)=∃ |D(xj)|) < |D(xi)|

An interesting special case of the former theorem one encounters when the uni-
versal functional argument appears as an independent variable in no prefix func-
tion, i.e. when it is to the right of every existentially quantifiers involved in the
constraint. In this case, the last condition becomes |D(xi)| > 1: if the variables
not-yet-assigned in the left-to-right order of the prefix when xi is encountered
are all universals, then the consistent value for xi (if any) is functionally speci-
fied, hence it is unique. If the domain of xi contains more than one element, the
constraint can be made false.
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Example 15. Let us consider how a functional analysis (jointly with an existen-
tial analysis) can simulate the first rule in Table 1. If x− �= x+ then |D(x)| > 1.
But, the constraint is functional in x, and no existential quantifier to the left of
x exists (actually, no existential quantifier at all is mentioned). So, |D(x)| > 1
is sufficient to infer the inconsistency. A similar reasoning holds for the cases
y− �= y+ and z− �= z+. If no inconsistency is detected after this functional
analysis, each domain necessarily has cardinality equal to one. In this case, the
x− + y− �= z− check is equivalent to the existential analysis.

An injectively functional constraint is a functional constraint, hence subject to
the sufficient conditions discussed above, but its additionally property can be
exploited.

Theorem 16 (Injectively Functional Inconsistency). A sufficient condi-
tion for a quantified constraint Qc(X1, . . . , Xn) to be inconsistent is:

1. The constraint is injectively functional on Xi

2. (
∏

Xi≺Xj ,q(Xj)=∀ |D(xj)|) > 1

We notice that the inference power of functional domain analysis is incompa-
rable with the rules given in Table 1. We have already encountered a case in
which those rules are strictly more powerful than domain analysis (if the do-
main contains holes). However, it is easy to show examples where the opposite
holds.

Domain functional analysis can be generalized to sets of functional constraints
(that share some variable), yielding a strictly more powerful rule.

Example 17. Inconsistency cannot be inferred by functionally analyzing each
single constraint, nor even by existential analysis, in

∃z ∈ {1, 2} ∀y ∈ {4, 16} ∃x ∈ {2, 4}
x2 = y ∧ 2z − x = 0

However, y is a function of x in the first constraint, and x is a function of z in
the second. So, a functional domain analysis for the overall constraint C′ : z → y
proves the inconsistency, because |D(y)| > 1 and z preceeds y.

3.3 Look-Ahead Analysis

Look-ahead consists in applying an enumeration step to a variable of the con-
straint. If the enumerated variable is universal, the reduced domains are com-
bined with intersection and if it is existential, with union. Look-ahead has to
be combined with a specific consistency and we assume for now that it is the
existential one. For c = (W, T ), we can then define the look-ahead of Qc on the
existential variable X ∈ W such that, on a given search state s, l(X)(s) = s′

with s′Y =
⋃

a∈DX
eacc(s[X ← a])|Y . Similarly, the look-ahead of Qc on the

universal variable X ∈ W is l(X)(s) = s′ with s′Y =
⋂

a∈DX
eacc(s[X ← a])|Y .

Quantified arc-consistency can be computed by a look-ahead on every variable
in the quantification order.
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Look-ahead can be particularly efficient for convex constraints:

Definition 18 (Convex Constraint). An n-ary constraint c over ordered sets
is convex on i-th argument iff every time that c(a1, . . . , ai−1, ai, ai+1, . . . , an)
and c(a1, . . . , ai−1, bi, ai+1, . . . , an) with ai < bi then necessarily c(a1, . . . , ai−1, x,
ai+1, . . . , an) holds for every ai < x < bi. The constraint is simply convex if it
is convex on every argument.

The class of convex constraints contains interesting elements, such as the widely
used “linear constraints” that express some disequality relation between linear
expressions, e.g.

x + 2y ≤ 3z

For convex constraints we can prove a simple but useful property. We call
convex look-ahead a consistency check in which only the bounds of a variables
are tested.

Theorem 19 (Convex Lookahead). Given a convex constraint Q1x1. . . .
Qnxn. C(x1, . . . , xn), the n-step look-ahead procedure detects an inconsistency
iff the n-step convex look-ahead does.

Example 20. A 1-step convex lookahead is enough to simulate the ∀x∀y∃z rule in
Table 1. We already know that the contraction of the domain of z can be realized
by existential analysis, while the same kind of analysis might fail to capture the
three inconsistency conditions. For example, under z− > x− + y− the value x−

is removed by existential analysis (hence the inconsistency is detected) only if it
is also z− < x− + y+. But if we consider the situation

∀x ∈ {0, 1}∀y ∈ {1, 2, 3}∃z ∈ {2, 3}.x + y = z

the existential analysis says nothing. A functional analysis may provide enough
inference power to infer inconsistence, like in this case (the constraint is func-
tional on y, and y dominates the existential variable z in the prefix, and |D(z)| <
|D(y)|). However, the lifted case

∀x ∈ {0, 1}∀y ∈ {1, 2, 3}∃z ∈ {2, 3, 4}.x + y = z

is still FALSE but this time subject to no dimensional inference. A one-step
lookahead on the x− value solves the problem : at the first step, by taking value
0 for x, we obtain:

∀y ∈ {1, 2, 3}∃z ∈ {2, 3, 4}.y = z

which is existentially reduced to an inconsistency by eliminating 1 from the D(y).
More in general, the two 1-step sub-problems identified in the convex constraint
analysis on x or y solve the problem in case the previous techniques do not apply.

3.4 Dual Analysis

By dual analysis we mean any form of inference that takes into account at the
same time the direct QCSP problem, and its dual version. The dual version
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is obtained by inverting each quantifier in the prefix, and negating the set of
constraints. The dual problem is true if and only if the direct one is false.

Dual reasoning in the framework of QCSP has been proposed for the first
time in [2], where it was used to help the search procedure to be less redundant.
Indeed, the dual problem models winning strategies for the universal opponent.
When a value can be removed from an existential domain in the dual problem,
the same value can be safely ignored in the domain of the corresponding univer-
sal variable of the direct problem, because it is guaranteed to make the (dual)
problem false, hence it does not contradict any constraint in the (direct) prob-
lem. The overall effect is that of reducing the branching factor during universal
branching, because a smaller set of cases is to be considered.

The way we use dual reasoning in building a QCSP solver is slightly different.
Essentially, we exploit the analysis of the dual problem as a way to strengthen
the inference power of a purely existential propagator.

Example 21. Let us consider the problem

∀x ∈ {1, 2}∀y ∈ {1, 2}∃z ∈ {1, 2}.C(x, y, z)

and its dual problem

∃x ∈ {1, 2}∃y ∈ {1, 2}∀z ∈ {1, 2}.C(x, y, z)

where the constraints C and C are explicitly defined as

C(x, y, z) C(x, y, z)
x y z x y z
1 2 1 2 1 1
2 1 2 2 2 1
1 1 1 2 2 2
1 1 2
1 2 2

Even though the problem is false, the existential analysis on C(x, y, z) is able
to infer nothing (no variable domain can be reduced). However, if we perform an
existential analysis on C(x, y, z) we are able to reduce the (existential) domain
of x from {1, 2} to {2}. This means that for x = 1 the dual problem is false,
hence the direct problem is true. So, we can reduce the interesting cases for the
domain of the universal variable x in the direct problem to {2} only (in the other
cases we know that the universal player cannot win). Given that only the tuple
〈2, 1, 2〉 remains under this restriction, we can apply existential reasoning again
in the direct problem and reduce the domain of y from {1, 2} to {2}, hence we
derive an inconsistency.

As the example shows, dual analysis may be fruitfully employed during consis-
tency check for a single constraint, not necessarily for the problem as a whole.
Still, the most interesting case would be to reason on a completely mirrored
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problem. While, as discussed in [2], it is true that “there is no theoretical obsta-
cle in obtaining the negated version of the problem in a finite-domain setting”,
it has to be taken into account that the negation of a conjunction of constraints
is a disjunction of negated constrains. This fact poses two challenges to any
CSP-based solution willing to re-use existing solutions:

– Some of the negated constraints may have a quite natural, one-constraint
representation in the system (e.g. we move from x > y + z to x ≤ y + z),
others may not (e.g. the negation of a disjunction).

– Furthermore, any CSP system is built to reason on conjunctions of con-
straints. The fixpoint computation for propagators and the management of
domain variables are seriously affected by the shift to the disjunctive form.

4 Experiments

An implementation of a QCSP solver following these principles is in progress
on top of the solver Gecode [9]. It allows to reuse all existing constraints of
Gecode, including global constraints, for which the existential propagator is pro-
vided. We are aware of no other QCSP solver taking as input a constraint lan-
guage as expressive as the one we consider. So, we compare our implementation
on a greatly restricted input language, for which benchmarks and solvers ex-
ist though. Namely, we refer to the random model generator described in [7],
and compare with the state-of-the-art results reported therein. That model only
generates QCSPs over binary constraints whose truth tables have been explic-
itly provided. Hence, the very core of our work is not exercised. At least, the
comparison gives meaningful indication on the level of integration that has been
achieved between our quantified propagation and search scheme and the robust
and publicly available CSP solver GeCode.

Figure 2 present results for two settings of the random generator. All the data
but the QeCode’s ones are taken from [7]. In the left picture, the mean average
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Fig. 2. Comparison over the random instances described in [7]. In the left picture the
parameters are n = 21, n∀ = 7, d = 8, p = 0.2, q∀∃ = 1/2. In the right picture it is the
same but n = 24, n∀ = 8, d = 9. The value of the q∃∃ parameter is given on the x axis.
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value of 100 runs for each value on the x axis is reported, and the comparison
is against the state of the art QCSP-Solve solver2 in various configurations (ob-
tained by switching on/off advanced search/learning techniques). In the right
picture, the median value of 100 runs is compared against the best QCSP-Solve
configuration and a QBF-based approach called CSBJ.

The relatively good experimental behavior of QeCode is extremely promising
for the following reasons. First, QCSP-Solve focuses on implementing several en-
hancements to the search procedure which are not key to this paper and are thus
missing in QeCode 0.1 (namely: search-level look-ahead, pure-value detection,
conflict-directed backjumping, solution-directed pruning, and symmetry detec-
tion). Such techniques will be added in future releases. Second, QCSP-Solve and
CSBJ have been written from scratch with QCSP problems in mind, while the
QeCode way of solving the above random models is really a cooperation between
GeCode’s machinery and our techniques. For example, the search is driven by
QeCode, but the fixpoint computation of propagation is done by GeCode, and
during such propagation QeCode intervenes with special propagators that sim-
ulate the effect of universal quantification. Last but absolutely not least, QCSP-
Solve and CSBJ are tailored for explicitly defined binary constraints (and are
only able to handle that ones) while QeCode can take as input any constraint
GeCode can, and explicitly defined binary ones are just a very special case. In
the current status, existential and functional analysis are provided, as well as
a SAT-inspired implementation of heuristics. QeCode will be shortly available,
and accessible from the authors web page.

5 Conclusion

In this paper, we propose a conservative scheme to reuse a classical CSP solver
in the quantified case. It requires several analysis of the constraints: existential,
functional, dual analysis and look-ahead. Even without look-ahead which could
yield full quantified arc-consistency, these techniques are shown to be remarkably
powerful on a first version of QeCode, a quantified solver built on top of GeCode.
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Abstract. Real-life problems present several kinds of preferences. We focus on
problems with both positive and negative preferences, that we call bipolar prefer-
ence problems. Although seemingly specular notions, these two kinds of prefer-
ences should be dealt with differently to obtain the desired natural behaviour. We
technically address this by generalizing the soft constraint formalism, which is
able to model problems with one kind of preferences. We show that soft con-
straints model only negative preferences, and we define a new mathematical
structure which allows to handle positive preferences as well. We also address
the issue of the compensation between positive and negative preferences, study-
ing the properties of this operation. Finally, we extend the notion of arc consis-
tency to bipolar problems, and we show how branch and bound (with or without
constraint propagation) can be easily adapted to solve such problems.

1 Introduction

Many real-life problems contain statements which can be expressed as preferences.
Our long-term goal is to define a framework where many kinds of preferences can be
naturally modelled and efficiently dealt with. In this paper, we focus on problems which
present positive and negative preferences, that we call bipolar preference problems.

Positive and negative preferences can be thought as two symmetric concepts, and
thus one can think that they can be dealt with via the same operators. However, this
would not model what one usually expects in real scenarios. In fact, usually combina-
tion of positive preferences should produce a higher (positive) preference, while com-
bination of negative preferences should give us a lower (negative) preference.

When dealing with both kinds of preferences, it is natural to express also indiffer-
ence, which means that we express neither a positive nor a negative preference over
an object. Then, a desired behaviour of indifference is that, when combined with any
preference (either positive or negative), it should not influence the overall preference.

Finally, besides combining preferences of the same type, we also want to be able to
combine positive with negative preferences. We strongly believe that the most natural
and intuitive way to do so is to allow for compensation. Comparing positive against
negative aspects and compensating them w.r.t. their strength is one of the core features
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of decision-making processes, and it is, undoubtedly, a tactic universally applied to
solve many real life problems.

Positive and negative preferences might seem as just two different criteria to reason
with, and thus techniques such as those usually adopted by multi-criteria optimization
[13] could appear suitable for dealing with them. However, this interpretation would
hide the fundamental nature of bipolar preferences, that is, positive preferences are
naturally opposite of negative preferences. Moreover, in multi-criteria optimization it
is often reasonable to use a Pareto-like approach, thus associating tuples of values to
each solution, and comparing solutions according to tuple dominance. Instead, in bipo-
lar problems, it would be very unnatural to force such an approach in all contexts,
or to associate to a solution a preference which is neither a positive nor a negative
one.

Soft constraints [5] are a useful formalism to model problems with quantitative pref-
erences. However, they can only model negative preferences, since in this framework
preference combination returns lower preferences. In this paper we adopt the soft con-
straint formalism based on semirings to model negative preferences. We then define a
new algebraic structure to model positive preferences. To model bipolar problems, we
link these two structures and we set the highest negative preference to coincide with the
lowest positive preference to model indifference. We then define a combination opera-
tor between positive and negative preferences to model preference compensation, and
we study its properties.

Non-associativity of preference compensation occurs in many contexts, thus we
think it is too restrictive to focus just on associative environments. For example, non-
associativity of compensation arises when either positive or negative preferences are
aggregated with an idempotent operator (such as min or max), while compensation
is instead non-idempotent (such as sum). Our framework allows for non-associativity,
since we want to give complete freedom to choose the positive and negative algebraic
structures. However, we also describe a technique that, given a negative structure, builds
a corresponding positive structure and an associative compensation operator.

Finally, we consider the problem of finding optimal solutions of bipolar problems,
by suggesting a possible adaptation of constraint propagation and branch and bound to
the generalized scenario.

Summarizing, the main results are:

– a formal definition of an algebraic structure to model bipolar preferences;
– the study of the notion of compensation and of its properties (such as associativity);
– a technique to build a bipolar preference structure with an associative compensation

operator;
– the adaptation of branch and bound to solve bipolar problems;
– the definition of bipolar propagation and its use within a branch and bound solver.

The paper is organized as follows. Section 2 recalls the main notions of semiring-
based soft constraints. Section 3 describes how to model negative preferences using
usual soft constraints, and how to model positive preferences. Section 4 shows how to
model both positive and negative preferences, and Section 5 defines constraint problems
with both positive and negative preferences. Section 6 shows that it is important to
have a bipolar structure for expressing both positive and negative preferences, since
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expressing all the problems’ requirements in a positive (or negative) form might lead to
different optimal solutions. Section 7 shows that very often the compensation operator
is not associative and it describes a technique to build a bipolar preference structure
with an associative compensation operator. Section 8 shows how to adapt branch and
bound to solve bipolar problems, how to define bipolar propagation and its use within
a branch and bound solver. Finally, Section 9 describes the existing related work and
gives some hints for future work.

Earlier versions of parts of this paper have appeared in [6].

2 Semiring-Based Soft Constraints

A soft constraint [5] is a classical constraint [1] where each instantiation of its variables
has an associated value from a (totally or partially ordered) set. This set has two oper-
ations, which makes it similar to a semiring, and is called a c-semiring. A c-semiring
is a tuple (A, +, ×,0,1) s.t. A is a set and 0,1 ∈ A; + is commutative, associative,
idempotent, 0 is its unit element, and 1 is its absorbing element; × is associative, com-
mutative, distributes over +, 1 is its unit element and 0 is its absorbing element. Given
the relation ≤S over A s.t. a ≤S b iff a + b = b, ≤S is a partial order; + and × are
monotone on ≤S; 0 is its minimum and 1 its maximum; 〈A, ≤S〉 is a lattice and, for all
a, b ∈ A, a+b = lub(a, b). Moreover, if × is idempotent, then 〈A, ≤S〉 is a distributive
lattice and × is its glb. Informally, the relation ≤S gives us a way to compare (some of
the) tuples of values and constraints. In fact, when we have a ≤S b, we will say that b
is better than a.

Given a c-semiring S = (A, +, ×,0,1), a finite set D (the domain of the variables),
and an ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V
and def : D|con| → A. Therefore, a constraint specifies a set of variables (the ones
in con), and assigns to each tuple of values of D of these variables an element of the
semiring set A. Given a subset of variables I ⊆ V , and a soft constraint c = 〈def, con〉,
the projection of c over I , written c ⇓I , is a new soft constraint 〈def ′, con′〉, where
con′ = con∩I and def(t′) =

∑
{t|t↓con′=t′} def(t). The scope, con′, of the projection

constraint contains the variables that con and I have in common, and thus con′ ⊆
con. Moreover, the preference associated to each assignment to the variables in con′,
denoted with t′, is the highest (

∑
is the additive operator of the c-semiring) among the

preferences associated by def to any completion of t′, t, to an assignment to con.
A soft constraint satisfaction problem (SCSP) is just a set of soft constraints over a set

of variables. A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
({false, true}, ∨, ∧, false, true). On the other hand, fuzzy CSPs can be modelled in
the SCSP framework by choosing the c-semiring: SFCSP = ([0, 1], max, min, 0, 1).
For weighted CSPs, the semiring is SWCSP = (R+, min, +, +∞, 0). Here preferences
are interpreted as costs of which we want to minimize the sum. For probabilistic CSPs,
the semiring is SPCSP = ([0, 1], max, ×, 0, 1). Here preferences are interpreted as
probabilities and the aim is to maximize the joint probability.

Given an assignment to all the variables of an SCSP, we can compute its preference
value by combining the preferences associated by each constraint to the subtuples of
the assignments referring to the variables of the constraint. An optimal solution of an
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SCSP is then a complete assignment t such that there is no other complete assignment
t′ with pref(t) <S pref(t′).

3 Negative and Positive Preferences

The structure we use to model negative preferences is exactly a c-semiring, as defined in
Section 2. In fact, in a c-semiring the element which acts as indifference is 1, since ∀a ∈
A, a × 1 = a. This element is the best in the ordering, which is consistent with the fact
that indifference is the best preference when using only negative preferences. Moreover,
in a c-semiring, combination goes down in the ordering, since a × b ≤ a, b. This can
be naturally interpreted as the fact that combining negative preferences worsens the
overall preference. From now on, we use (N, +n, ×n, ⊥n, �n) as c-semiring to model
negative preferences.

When dealing with positive preferences, we want two main properties to hold: com-
bination should bring to better preferences, and indifference should be lower than all the
other positive preferences. These properties can be found in the following structure.

Definition 1. A positive preference structure is a tuple (P, +p, ×p, ⊥p, �p) s.t.

– P is a set and �p, ⊥p∈ P ;
– +p, the additive operator, is commutative, associative, idempotent, with ⊥p as its

unit element (∀a ∈ P, a +p ⊥p= a) and �p as its absorbing element (∀a ∈
P, a +p �p = �p);

– ×p, the multiplicative operator, is associative, commutative and distributes over
+p (a ×p (b +p c) = (a ×p b) +p (a ×p c)), with ⊥p as its unit element and �p as
its absorbing element1.

Notice that the additive operator of this structure has the same properties as the corre-
sponding one in c-semirings, and thus it induces a partial order over P in the usual way:
a ≤p b iff a+pb = b. This allows to prove that +p is monotone over ≤p and that it is the
least upper bound in the lattice (P, ≤p). On the other hand, the multiplicative operator
has different properties. More precisely, the best element in the ordering (�p) is now
its absorbing element, and the worst element (⊥p) is its unit element. This reflects the
desired behavior of the combination of positive preferences.

Theorem 1. Given a positive preference structure (P, +p, ×p, ⊥p, �p), consider the
relation ≤p over P . Then, ×p is monotone over ≤p (that is, for any a, b ∈ P s.t. a ≤p b,
then a ×p d ≤p b ×p d, ∀d ∈ P ), and ∀a, b ∈ P , a ×p b ≥p a +p b ≥p a, b.

Proof. Since a ≤p b iff a+p b = b, then b×p d = (a+p b)×p d = (a×p d)+p (b×p d).
Thus a ×p d ≤p b ×p d. Also, a ×p b = a ×p (b +p ⊥p) = (a ×p b) +p (a ×p ⊥p)
= (a ×p b) +p a. Thus a ×p b ≥p a (the same for b). Finally: a ×p b ≥ a, b. Thus
a ×p b ≥ lub(a, b) = a +p b. Q.E.D.

In a positive preference structure, ⊥p is the element modelling indifference. In fact, it
is the worst one in the ordering and it is the unit element for the combination operator

1 The absorbing nature of �p can be derived from the other properties.
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×p. These are exactly the desired properties for indifference w.r.t. positive preferences.
The role of �p is to model a very high preference, much higher than all the others. In
fact, since it is the absorbing element of the combination operator, when we combine
any positive preference a with �p, we get �p.

An example of a positive preference structure is P1 = (R+, max, +, 0, +∞), where
preferences are positive reals. The smallest preference that can be assigned is 0. It rep-
resents the lack of any positive aspect and can thus be regarded as indifference. Prefer-
ences are aggregated taking the sum and are compared taking the max.

Another example is P2 = ([0, 1], max, max, 0, 1). In this case preferences are reals
between 0 and 1, as in the fuzzy semiring for negative preferences. However, the com-
bination operator is max, which gives, as a resulting preference, the highest one among
all those combined.

As an example of a partially ordered positive preference structure consider the Carte-
sian product of the two structures described above: (R+×[0, 1], (max, max), (+, max),
(0, 0), (+∞, 1)). Positive preferences, here, are ordered pairs where the first element
is a positive preference of type P1 and the second one is a positive preference of type
P2. Consider for example the (incomparable) pairs (8, 0.1) and (3, 0.8). Applying the
aggregation operator (+,max) gives the pair (11, 0.8) which, as expected, is better than
both pairs, since max(8, 3, 11) = 11 and max(0.1, 0.8, 0.8) = 0.8.

4 Bipolar Preference Structures

Once we are given a positive and a negative preference structure, a naive way to com-
bine them would be performing the Cartesian product of the two structures. For exam-
ple, if we have a positive structure P and a negative structure N , taking their Cartesian
product would mean that, given a solution, it will be associated with a pair (p, n), where
p ∈ P is the overall positive preference and n ∈ N is the overall negative preference.
Such a pair is in general neither an element of P nor of N , so it is neither positive
nor negative, unless one or both of p and n are the indifference element. Moreover, the
ordering induced over these pairs is the well known Pareto ordering, which may induce
a lot of incomparability among the solutions. These two features imply that compensa-
tion is not allowed at all. Instead, we believe that it should be allowed, if desired. We
will therefore now describe a bipolar preference structure that allows for it.

Definition 2. A bipolar preference structure is a tuple (N, P, +, ×, ⊥, �, �), where

– (P, +|P , ×|P , �, �) is a positive preference structure;
– (N, +|N , ×|N , ⊥, �) is a c-semiring;
– + : (N ∪ P )2 −→ (N ∪ P ) is s.t. an + ap = ap for any an ∈ N and ap ∈ P ; this

operator induces as partial ordering on N ∪P : ∀a, b ∈ P ∪N , a ≤ b iff a+b = b;
– × : (N ∪P )2 −→ (N ∪P ) is an operator (called the compensation operator) that,

for all a, b, c ∈ N ∪ P , satisfies the following properties:
• commutativity: a × b = b × a;
• monotonicity: if a ≤ b, then a × c ≤ b × c.
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In the following, we will write +n instead of +|N and +p instead of +|P . Similarly for
×n and ×p. Moreover, we will sometimes write ×np when operator × will be applied
to a pair in (N × P ).

Notice that bipolar structures generalize both negative and positive preference struc-
tures via a bipolar structure with a single positive/negative preference element.

Given the way the ordering is induced by + on N ∪ P , easily, we have ⊥≤ � ≤ �.
Thus, there is a unique maximum element (that is, �), a unique minimum element
(that is, ⊥); the element � is smaller than any positive preference and greater than
any negative preference, and it is used to model indifference. The shape of a bipolar
preference structure is shown in the following figure:

p+,P p

N +
n n,

Notice that, although all positive preferences are strictly above negative preferences,
our framework does not prevent from using the same scale, or partially overlapping
scales, to represent positive and negative preferences.

A bipolar preference structure allows us to have different ways to model and reason
about positive and negative preferences. In fact, we can have different lattices (P, ≤p)
and (N, ≤n). This is common in real-life problems, where negative and positive state-
ments are not necessarily expressed using the same granularity. For example, we could
be satisfied with just two levels of negative preferences, while requiring several levels
of positive preferences. Nevertheless, our framework allows to model cases in which
the two structures are isomorphic, as well (see Section 7).

Notice that the combination of a positive and a negative preference is a preference
which is higher than, or equal to, the negative one and lower than, or equal to, the
positive one.

Theorem 2. Given a bipolar preference structure (N, P, +, ×, ⊥, �, �), for all p ∈ P
and n ∈ N , n ≤ p × n ≤ p.

Proof. For any n ∈ N and p ∈ P , � ≤ p and n ≤ �. By monotonicity of ×, we have:
n × � ≤ n × p and n × p ≤ � × p. Hence: n = n × � ≤ n × p ≤ � × p = p. Q.E.D.

This means that the compensation of positive and negative preferences lies in one of the
chains between the two combined preferences. Notice that all such chains pass through
the indifference element �. Possible choices for combining strictly positive with strictly
negative preferences are thus the average or the median operator, or also the minimum
or the maximum.

Moreover, by monotonicity, we can show that if � × ⊥ = ⊥, then the result of the
compensation between any positive preference and the bottom element is the bottom
element, and if � × ⊥ = �, then the compensation between any negative preference
and the top element is the top element.

Theorem 3. Given a bipolar preference structure (N, P, +, ×, ⊥, �, �), if �×⊥ = ⊥,
then ∀p ∈ P , p × ⊥ = ⊥, while, if � × ⊥ = �, then ∀n ∈ N , n × � = �.
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Proof. Assume � × ⊥ = ⊥. Since for all p ∈ P , p ≤ �, then, by monotonicity of ×,
p × ⊥ ≤ � × ⊥ = ⊥, hence p × ⊥ = ⊥.

Assume � × ⊥ = �. Since for all n ∈ N , ⊥ ≤ n, then, by monotonicity of ×,
� = � × ⊥ ≤ � × n, hence � × n = �. Q.E.D

In the following table we give three examples of bipolar preference structures, one for
each row.

N,P + × ⊥, �, �
R−, R+ +p=+n=+np= max ×p=×n=×np=sum −∞, 0, +∞

[−1, 0], [0, 1] +p=+n=+np=max ×p=max, ×n=min, ×np =sum −1, 0, 1
[0, 1], [1, +∞] +p=+n=+np=max ×p=×n=×np=prod 0, 1, +∞

The structure described in the first row uses real numbers as positive and negative pref-
erences. Compensation is obtained by summing the preferences, while the ordering is
given by the max operator. In the second structure we have positive preferences between
0 and 1 and negative preferences between -1 and 0. Aggregation of positive preferences
is max and of negative preferences is min, while compensation between positive and
negative preferences is sum, and the order is given by max. In the third structure we
use positive preferences between 1 and +∞ and negative preferences between 0 and
1. Compensation is obtained by multiplying the preferences and ordering is again via
max. Notice that if � × ⊥ ∈ {�, ⊥}, then compensation in the first and in the third
structure is associative.

5 Bipolar Preference Problems

A bipolar constraint is just a constraint where each assignment of values to its variables
is associated to one of the elements in a bipolar preference structure. A bipolar CSP
(V, C) is then just a set of variables V and a set of bipolar constraints C over V . There
could be many ways of defining the optimal solutions of a bipolar CSP. Here we propose
one which avoids problems due to the possible non-associativity of the compensation
operator, since compensation never involves more than two preference values.

Definition 3. Given a bipolar preference structure (N, P, +, ×, ⊥, �, �), a solution of
a bipolar CSP (V, C) is a complete assignment to all variables in V , say s, and an
associated preference which is computed as follows: pref(s) = (p1 ×p . . . ×p pk) ×
(n1 ×n . . . ×n nl), where pi ∈ P for i := 1, . . . , k and nj ∈ N for j := 1, . . . , l
and where ∃ 〈defi, coni〉 ∈ C s.t. pi = defi(s ↓con), and ∃〈defj , conj〉 ∈ C s.t.
nj = defj(s ↓con). A solution s is an optimal solution if there is no other solution s′

with pref(s′) > pref(s).

In this definition, the preference of a solution s is obtained by combining all the positive
preferences associated to its projections over the constraints, by using ×p, combining
all the negative preferences associated to its projections over the constraints, by using
×n, and then, combining the two preferences obtained so far (one positive and one
negative) by using the operator ×np.

Such a definition follows the same idea proposed in Chapter IV of [4] for evaluat-
ing the tendency of an act. Such an idea consists of summing up all the values of all
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the pleasures produced by the considered act on one side, and those of all the pains
produced by it on the other, and then balancing these two resulting values in a value
which can be on the side of pleasure or on the side of pain. If this value is on the side
of pleasure, then the tendency of the act is good, otherwise the tendency is bad.

Consider the scenario in which we want to buy a car and we have preferences over
some features. In terms of color, we like red, we are indifferent to white, and we hate
black. Also, we like convertible cars a lot and we don’t care much for big cars (e.g.,
SUVs). In terms of engines, we like diesel. However, we don’t want a diesel convertible.

We represent positive preferences via positive integers, negative preferences via neg-
ative integers and we maximize the sum of all kinds of preferences. This can be mod-
elled by a bipolar preference structure where N = [−∞, 0], P = [0, +∞], + =max,
×=sum, ⊥ = −∞, � = 0, � = +∞.

The following figure shows the structure (variables, domains, constraints, and pref-
erences) of such a bipolar CSP, where preferences have been chosen to fit the informal
specification above, and 0 is used to model indifference (also when tuples are not shown).

red     
black  
white   

+10
−10
   0

C

SUV
convertible +20

−3

E

T (convertible,diesel)  −20

diesel
gasoline

+10
0

  

Consider solution s1 =(red,convertible,diesel). We have pref(s1) = (def1(red) ×
def2(convertible) × def3(diesel)) × def4(convertible, diesel) = (10 + 20 + 10) +
(−20) = 20. We can see that the optimal solution is (red, convertible, gasoline) with
global preference of 30.

Consider now a different bipolar preference structure, which differs from the previ-
ous one only for ×p, which is now max. Now solution s1 has preference pref(s1) =
(def1(red)×def2(convertible)×def3(diesel))×def4(convertible, diesel) = max(10,
20, 10) + (−20) = 0. It is easy to see that now an optimal solution has preference 20.
There are two of such solutions: one is the same as the optimal solution above, and the
other one is (white,convertible, gasoline). The two cars have the same features except
for the color. A white convertible is just as good as a red convertible because we de-
cided to aggregate positive preference by taking the maximum elements rather than by
summing them.

6 Positive Versus Negative Preferences

Positive and negative preferences look so similar that, even though we know they need
different combination operators, we could wonder why we need two different structures
to handle them. Why can’t we just have one structure, for example the negative one, and
transform each positive preference into a negative one? For example, if there are only
two colors for cars, (i.e., red and blue), and we only like blue, instead of saying this
using positive preferences (i.e., we like blue with a certain positive preference), we
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could phrase it using negative preferences (i.e., we don’t like red with a certain negative
preference). In other words, instead of associating a positive preference to blue and
indifference to red, we could give a negative preference to red and indifference to blue.

In this section we will show that, by doing this, we could modify the solution or-
dering, thus representing a different optimization problem. Thus sometimes the two
preference structures are needed to model the problems under consideration: using just
one of them would not suffice.

It is easy to show that, by moving from a positive to a negative modelling of the same
information, as we have done in the example above, all solutions get a lower preference
value. In fact, in this transformation, a positive preference is replaced by indifference,
or indifference is replaced by a negative preference. So, in any case, some preference
is replaced by a lower one, and by monotonicity of the aggregation operators (×n, ×p,
and ×), the overall preference of the solutions is lower as well.

However, it is worth noting that this preference lowering might not preserve the
ordering among solutions. That is, solutions that were ordered in a certain way before
the modification, can be ordered in the opposite way after it. This is due to the fact that
aggregation of positive and negative preferences may behave differently. The following
example shows this phenomenon.

Consider the bipolar preference structure (R−, R+, max, ×, −∞, 0, +∞), where ×
is such that ×p=×np= sum and ×n = min. This means that we want to maximize the
sum of positive preferences, maximize the minimal negative preference (thus negative
preferences are handled as fuzzy constraints), that positive preferences are between 0
and +∞, and negative preferences are between 0 and -∞. Compensation is via alge-
braic sum, thus values v and −v are compensated completely (that is, the result of the
compensation is 0), while the compensation of values v and −v′ is v − v′.

Consider now a bipolar CSP over this structure with four variables, say X, Y, Z, W ,
where each variable has a Boolean domain as follows: D(X) = {a, ā}, D(Y ) = {b, b̄},
D(Z) = {c, c̄}, and D(W ) = {d, d̄}. Assume now that the preference of a is 2, of b is
1, of c is 2.4, and of d is 0.5, while the preference of the other elements is indifference
(that is, 0 in this example). This means that we have expressed all our statements in a
positive form.

Consider now two solutions s and s′ as follows: s = (a, b, c̄, d̄) and s′ = (ā, b̄, c, d).
By computing the preference of s, we get (2 + 1) + min(0, 0) = 3, while for s′ we get
min(0, 0) + (2.4 + 0.5) = 2.9. Thus s is better than s′.

Assume now to express the same statements in negative terms assuming that if we
like at level p an assignment t, then we dislike t̄ at the same level p. Hence, the prefer-
ence of ā is −2, of b̄ is −1, of c̄ is −2.4, and of d̄ is −0.5, while the preference of the
other elements is 0. Now the preference of s is (0 + 0) + min(−2.4, −0.5) = −2.4,
while the preference of s′ is min(−2, −1) + (0 + 0) = −2. Thus s′ is better than s.

7 Associativity of Preference Compensation

In general, the compensation operator × may be not associative. Here we list some
sufficient conditions for the non-associativity of the × operator.
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Theorem 4. Given a bipolar preference structure (P, N, +, ×, ⊥, �, �), operator × is
not associative if at least one of the following two conditions is satisfied:

– � × ⊥ = c ∈ (N ∪ P ) − {�, ⊥};
– ∃p ∈ P − {�, �} and n ∈ N − {⊥, �} s.t. p × n = � and at least one of the

following conditions holds:
• ×p or ×n is idempotent;
• ∃p′ ∈ P − {p, �} s.t. p′ × n = � or ∃n′ ∈ N − {n, ⊥} s.t. p × n′ = �;
• � × ⊥ = ⊥ and ∃n′ ∈ N − {⊥} s.t. n × n′ = ⊥;
• � × ⊥ = � and ∃p′ ∈ P − {�} s.t. p × p′ = �;
• ∃a, c ∈ N ∪ P s.t. a × p = c iff c × n �= a (or ∃a, c ∈ N ∪ P s.t. a × n = c iff

c × p �= a).

Proof. If c ∈ P−{�}, then �×(�×⊥) = �×c = �, while (�×�)×⊥ = �×⊥ = c.
If c ∈ N − {⊥}, then ⊥ × (⊥ × �) = ⊥ × c = ⊥, while (⊥ × ⊥) × � = ⊥ × � = c.

Assume that ∃p ∈ P − {�, �} and n ∈ N − {⊥, �} s.t. p × n = �. If ×p is
idempotent, then p × (p × n) = p × � = p, while (p × p) × n = p × n = �. Similarly
if ×n is idempotent.

If ∃p′ ∈ P −{p, �} s.t. p′ ×n = �, then (p×n)× p′ = p′, while p× (n× p′) = p.
Analogously, if ∃n′ ∈ N − {n, ⊥} s.t. p × n′ = �.

If � × ⊥ = ⊥, then, by Theorem 3, p × ⊥ = ⊥. If ∃n′ ∈ N − {⊥} s.t. n × n′ = ⊥,
then (p × n) × n′ =� × n′ = n′, while p × (n × n′) = p × ⊥ = ⊥ �= n′.

If � × ⊥ = �, then, by Theorem 3, n × � = �. If ∃p′ ∈ P − {�} s.t. p × p′ = �,
then (n × p) × p′ =� × p′ = p′, while n × (p × p′) =n × � = � �= p′.

If c×n �= a, then (a×p)×n = c×n �= a, but a×(p×n) = a×� = a. Analogously
if c × p �= a. Q.E.D.

Notice that sufficient conditions refer to various aspects of a bipolar preference struc-
ture: properties of operators, shape of P and N orderings, the relation between × and
the other operators. Since some of these conditions often occur in practice, it is not
reasonable to require always associativity of ×.

It is however useful to be able to build bipolar preference structures where compen-
sation is associative. It is obvious that, if we are free to choose any positive and any
negative preference structure when building the bipolar framework, we will never be
able to assure associativity of the compensation operator. Thus, to assure this, we must
pose some restrictions on the way a bipolar preference structure is built.

We describe now a procedure to build positive preferences as inverses of negative
preferences, that assures that the resulting bipolar preference structure has an associa-
tive compensation operator. To do that, ×n must be non-idempotent. The methodology
is called localization and represents a standard systematic technique for adding multi-
plicative inverses to a (semi)ring [8].

Given a (semi)ring with carrier set N (representing, in our context, a negative pref-
erence structure), and a subset S ⊆ N , we can construct another structure with carrier
set P (representing, for us, a positive preference structure), and a mapping from N to
P which makes all elements in the image of S invertible in P . The localization of N by
S is also denoted by S−1N .
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We can select any subset S of N . However, it is usual to select a subset S of N
which is closed under ×n, such that 1 ∈ S (1 is the unit for ×n, which represents
indifference), and 0 �∈ S.

Given N and S, let us consider the quotient field of N w.r.t. S. This is denoted
by Quot(N, S), and will represent the carrier set of our bipolar structure. One can
construct Quot(N, S) by just taking the set of equivalence classes of pairs (n, d), where
n and d are elements of N and S respectively, and the equivalence relation is: (n, d) ≡
(m, b) ⇐⇒ n ×n b = m ×n d. We can think of the class of (n, d) as the fraction n

d .
The embedding of N in Quot(N, S) is given by the mapping f(n) = (n,1), thus

the (semi)ring N is a sub(semi)ring of S−1N via the identification f(a) = a
1 .

The next step is to define the + and × operator in Quot(N, S), as function of the
operators +n and ×n of N . We define (n, d)+(m, b) = ((n×n b)+n (m×n d), d×n b)
and (n, d)× (m, b) = (m×n n, d×n b). By using the fraction representation we obtain
the usual form where the addition and the multiplication of the formal fractions are
defined according to the natural rules: a

s + b
t = (a×nt)+n(b×ns)

s×nt and a
s × b

t = a×nb
s×nt .

It can be shown that the structure (P, +p, ×p,
1
1 , 1

0 ), where P = {1
a s.t. a ∈ (S ∪

{0})}, +p and ×p are the operators + and × restricted over 1
S × 1

S , 1
1 is the bottom

element in the induced order (notice that the element coincide with 1), and 1
0 is the top

element of the structure2, is a positive preference structure. Moreover, Quot(N, S) =
P ∪N , and it is the carrier of a bipolar preference structure 〈P, N, +, ×,0, 1

1 , 1
0〉 where

× is an associative compensation operator by construction.
Notice that the first example of the table in Section 4, as well as the third example

restricted to rational numbers, can be obtained via the localization procedure.

8 Solving Bipolar Preference Problems

Bipolar problems are NP-complete, since they generalize both classical and soft con-
straints, which are already known to be difficult problems [5]. In this section we will
consider how to adapt some usual techniques for soft constraints to bipolar problems.

8.1 Branch and Bound

Preference problems based on c-semirings can be solved via a branch and bound tech-
nique (BB), possibly augmented via soft constraint propagation, which may lower the
preferences and thus allow for the computation of better bounds [5].

In bipolar CSPs, we have both positive and negative preferences. However, if the
compensation operator is associative, standard BB can be applied. Thus bipolar prefer-
ences can be handled without additional effort.

However, if compensation is not associative, the upper bound computation has to
be slightly changed to avoid performing compensation before all the positive and the
negative preferences have been collected. More precisely, each node of the search tree
is associated to a positive and a negative preference, say p and n, which are obtained
by aggregating all preferences of the same type obtained in the instantiated part of
the problem. Next, all the best preferences (which may be positive or negative) in the

2 This element is introduced ad hoc because 0 is not an unit and cannot be used to build its
inverse.
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uninstantiated part of the problem are considered. By aggregating those of the same
type, we get a positive and a negative preference, say p′ and n′, which can be combined
with the ones associated to the current node. This produces the upper bound ub =
(p ×p p′) × (n ×n n′), where p′ = p1 ×p . . . ×p pw, n′ = n1 ×n . . . ×n ns, with
w + s = r, where r is the number of uninstantiated variables/constraints. Notice that
ub is computed via r − 1 aggregation steps and one compensation step.

On the other hand, when compensation is associative, we don’t need to postpone
compensation until all constraints have been considered. Thus, ub can be computed as
ub = a1 × . . . × ap+r, where ai ∈ N ∪ P is the best preference found in a constraint
of either the instantiated part of the problem (first p elements) or the uninstantiated part
of the problem (last r elements). Thus ub can be computed via at most p + r − 1 steps
among which there can be many compensation steps.

8.2 Bipolar Propagation

When looking for an optimal solution, BB can be helped by some form of partial or full
constraint propagation. To see whether this can be done when solving bipolar problems
as well, we must first understand what constraint propagation means in such problems.
For sake of semplicity, we will focus here on arc-consistency.

Given any bipolar constraint, let us first define its negative version neg(c), which
is obtained by just replacing the positive preferences with indifference. Similarly, the
positive version pos(c) is obtained by replacing negative preferences with indifference.

A binary bipolar constraint c is then said negatively arc-consistent (NAC) iff neg(c)
is soft arc-consistent. If the binary constraint connects variables X and Y , let us call it
cXY , and let us call cX the soft domain of X and cY the soft domain of Y . Then, being
soft arc consistent means that neg(cX) = (neg(cX) ×n neg(cY ) ×n neg(cXY )) ⇓X

and neg(cY ) = (neg(cX)×nneg(cY )×nneg(cXY )) ⇓Y . If this is not so, we can make
a binary bipolar constraint NAC by modifying the soft domains of its two variables such
that the two equations above hold. The modifications required can only decrease some
preference values. Thus some negative preferences can become more negative than be-
fore. If operator ×n is idempotent, then such modifications generate a new constraint
which is equivalent to the given one.

Let us now consider the positive version of a constraint. Let us also define an op-
eration ⇑X , which, taken any constraint cS over variables S such that X ∈ S, com-
putes a new constraint over X as follows: for every value a in the domain of X , its
preference is computed by taking the greatest lower bound of all preferences given by
cS to tuples containing X = a. Then we say that a binary bipolar constraint is posi-
tively arc-consistent (PAC) iff cX = (pos(cX)×p pos(cY )×p pos(cXY ))⇑X and cY =
(pos(cX) ×p pos(cY ) ×p pos(cXY ))⇑Y . If this is not so, we can make a binary bipo-
lar constraint PAC by modifying the soft domains of its two variables such that the two
equations above hold. The modifications required can only involve the increase of some
preference values. Thus some positive preferences can become more positive than be-
fore. If operator ×p is idempotent, such modifications generate a new constraint which
is equivalent to the given one.

Finally, we say that a binary bipolar constraint is Bipolar Arc-Consistent (BAC) iff
it is NAC and PAC. A bipolar constraint problem is BAC iff all its constraints are BAC.
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If a bipolar constraint problem is not BAC, we can consider its negative and positive
versions and achieve PAC and NAC on them. If both ×n and ×p are idempotent, this
can be seen as the application of functions which are monotone, inflationary, and idem-
potent on a suitable partial order. Thus usual algorithms based on chaotic iterations [1]
can be used, with the assurance of terminating and having a unique equivalent result
which is independent of the order in which constraints are considered. However, this
can generate two versions of the problem (of which one is NAC and the other one is
PAC) which could be impossible to reconcile into a single bipolar problem.

The problem can be solved by achieving only partial forms of PAC and NAC in a
bipolar problem. The basic idea is to consider the given bipolar problem, apply the
NAC and PAC algorithms to its negative and positive versions, and then modify the
preferences of the original problem only when the two new versions can be reconciled,
that is, when at least one of the two new preferences is the indifference element. In fact,
this means that, in one of the two consistency algorithms, no change has been made.
If this holds, the other preference is used to modify the original one. This algorithm
achieves a partial form of BAC, that we call p-BAC, and assures equivalence.
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Fig. 1. How to make a bipolar constraint p-BAC

In Figure 1 it is shown how to make a bipolar constraint partially Bipolar Arc-
Consistent. Part (a) shows a bipolar constraint, named cX , over variable X , a bipolar
constraint, named cY , over variable Y , and a bipolar constraint, named cXY , linking
X and Y . Preferences are modelled by the bipolar preference structure (N = [−1, 0],
P = [0, 1], + = max, ×, ⊥= −1, � = 0, � = 1), where × is such that ×p = max,
×n = min and ×np = sum. Since preferences are given independently in cX , cY and
cXY , it is possible to give a low positive preference for a value of X (e.g., X = b) in
cX , a negative preference for a value of Y (e.g., X = b) in CY , but an high positive
preference for the combination of such values in cXY . In Part (b) we present the positive
version of cXY , that becomes PAC, by increasing the positive preference associated to
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X = b from +0.1 to +0.6. Part (c) presents the negative version of cXY , that becomes
NAC, by decreasing the negative preference associated to X = a from −0.2 to −0.4.
In Part (d) we show how to achieve p-BAC of cXY . For obtaining p-BAC we must rec-
oncile the modified preferences obtained in Part (b) and in Part (c) when it is possible.
Since in this example it is always possible to reconcile such preferences, we obtain a
bipolar constraint which is not only p-BAC, but also BAC.

In this approach we require idempotency of ×p and ×n. However, we could apply
arc-consistency also when such operators are not idempotent, by following the extended
version of arc-consistency presented in [10,7,18].

Notice that our algorithm will possibly decrease some negative preferences and in-
crease some positive preferences. Therefore, if we use constraint propagation to im-
prove the bounds in a BB algorithm, it will actually sometimes produce worse bounds,
due to the increase of the positive preferences. We will thus use only the propagation of
negative preferences (that is, NAC) within a BB algorithm. Since the upper bound is just
a combination of several preferences, and since preference combination is monotonic,
lower preferences give a lower, and thus better, upper bound.

9 Related and Future Work

Bipolarity is an important topic in several fields, such as psychology [9,16,19,20] and
multi-criteria decision making [15] and it has recently attracted interest in the AI com-
munity, especially in argumentation [17] and qualitative reasoning [2,3,11,12]. These
works consider how two alternatives should be compared, given for each a set of posi-
tive arguments and a set of negative ones, but they don’t analyze the question of com-
binatorial choice.

Two works in qualitative reasoning which are directly related to our approach are
those described in [2,3]. In such papers a bipolar preference model based on a fuzzy-
possibilistic approach is described where fuzzy preferences are considered and negative
preferences are interpreted as violations of constraints. In this case precedence is given
to negative preference optimization, and positive preferences are only used to distin-
guish among the optimals found in the first phase, thus not allowing for compensation.

Another related work is [14], which considers only totally ordered unipolar and bipo-
lar preference scales, but not partially ordered bipolar scales like us. When the prefer-
ences are totally ordered, operators ×n and ×p described here correspond respectively
to the t−norm and t−conorm used in [14]. Moreover, in [14] it is defined an operator,
the uninorm, which can be seen as a restricted form of compensation and it is forced
to always be associative.

We plan to develop a solver for bipolar CSPs, which should be flexible enough to
accommodate for both associative and non-associative compensation operators. The
outlined algorithms for BB, NAC, PAC, and p-BAC will also be implemented and tested
over classes of bipolar problems.

We also intend to consider the presence of uncertainty in bipolar problems, possibly
using possibility theory and to develop solving techniques for such scenarios. Another
line of future research is the generalization of other preference formalisms, such as
multicriteria methods and CP-nets, to deal with bipolar preferences and to study the
relation between bipolarization and tradeoffs.
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Abstract. DisFC is an ABT-like algorithm that, instead of sending the value
taken by the high priority agent, it sends the domain of the low priority agent
that is compatible with that value. With this strategy, plus the use of sequence
numbers, some privacy level is achieved. In particular, each agent knows its value
in the solution, but ignores the values of the others. However, the idea of sending
the whole compatible domain each time an agent changes its value may cause
a privacy loss on shared constraints that was initially overlooked. To solve this
issue, we propose DisFClies, an algorithm that works like DisFC but it may lie
about the compatible domains of other agents. It requires a single extra condition:
if an agent sends a lie, it has to tell the truth in finite time afterwards. We prove
that the algorithm is sound, complete and terminates. We provide experimental
results on the increment in privacy achieved, at the extra cost of more search.

1 Introduction

In the last years, there is an increasing interest for solving constraint satisfaction prob-
lems in a distributed form. This has generated a new model, called DisCSP, where the
information of a CSP instance is distributed among several agents but it is never con-
centrated into a single agent. To solve this new model, new algorithms have appeared
that communicate by message passing. Among them, we underline the pioneering ABT
algorithm [11,12], that has been shown correct and complete.

There are several motivations to solve a CSP instance in a distributed form. We can
mention the difficulty to collect and move into a single server all the elements of an
instance if it is very large, if different formats coexists and the cost of translating them
is high. In addition, privacy is a motivation for distributed solving. Many problems
appear to be naturally distributed, each part belonging to a different agent. In the solving
process, agents desire to keep as private as possible the information they have, and
specially they do not want to reveal the values of the solution to other agents.

Although the initial ABT was not concerned with privacy issues (agents exchanged
their values freely), privacy has been a key aspect for new DisCSP solving algorithms.
Generally speaking, most distributed algorithms leak some kind of information in the
solving process, which can be exploited by some agents to deduce the reserved infor-
mation of other agents. So far, there are two main approaches to enforce privacy. One
considers the use of cryptographic techniques to conceal values and constraints [13,10].
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Alternatively, other authors try to enforce privacy by using different search strategies.
Our past work has followed this line, and this paper is a further step on this approach.

In previous work, we proposed Distributed Forward Checking (DisFC) [2]. It is an
ABT-like algorithm that, instead of sending the value of xi to agent j (assuming i with
higher priority than j), it sends the subset of values that j can take which are com-
patible with the i value. This idea, combined with the formulation of Partially Known
Constraints, and the use of sequence numbers to conceal the actual value taken by
an agent, allow for some degree of privacy. In particular, when a solution is found,
each agent knows its own value but ignores the values of other agents. However, we
overlooked the effect that sending the whole subset of compatible values may have in
constraint privacy. If i has d different values and in the solving process j receives d
different compatible subsets, then j knows all the rows of the constraint matrix that i
has, but without knowing their position. In the solving process, it is possible to deduce
that some positions are discarded for some rows [8]. At the end, agent j may have a
non-negligible amount of information about the constraint that i owns, which could be
used to break privacy. Nevertheless, computing the set of constraints that are compati-
ble with the information leaked in the solving process requires a significant amount of
work (computing all solutions of a CSP instance, that is, solving an NP-hard problem).

To prevent this issue, we suggest a new algorithm called DisFClies . It works like
standard DisFC with a single modification: it may lie in the subsets of compatible values
that j may take. Obviously, to keep completeness it has to tell the truth in the values
that i truly has. So if i has d values {v1, v2, . . . , vd}, DisFClies works as if i would
have d + k values {v1, v2, . . . , vd, vd+1, . . . , vd+k}. We call true values as the first d
values, while the rest are false values. When i takes the true value vp, 1 ≤ p ≤ d, it
sends to agent j the subset of values that are compatible with vp. When i takes the false
value vq, d < q ≤ d + k, DisFClies sends an invented subset of compatible values to j,
with the purpose of making more difficult the hypothetical deduction of j on the actual
constraint matrix of i. Again, to assure completeness, DisFClies has to allow all its true
values for assignment. As result, this strategy increases the level of privacy at the extra
cost of losing performance. This expected result poses a trade-off between efficiency
and privacy: enforcing privacy causes to decrease efficiency and vice versa.

In practical terms, what does this mean? First, we have to notice that, even in un-
solvable instances (where the major privacy loss occurs), not every agent will have the
same level of leaked information. Imagine an instance that contains a single unsolvable
subproblem. If the empty nogood is derived exclusively from the interaction of agents
in that subproblem, they will have a high level of information about their neighboring
constraints, since all possible combinations have been tried. However, agents in other
parts of the instance may have less information, if they have reached a consistent assign-
ment with less search. Considering DisFC on binary random problems without solution
of 16 variables, 10 values per variable and constraint connectivity of 0.4, it may exist
one agent that would find 1 matrix compatible with the information leaked, that is, the
constraint of the other agent. On the same problems, the new DisFClies would approx-
imately multiply this number by 2, 20 or 200 when allowing 1, 3 or 5 lies per agent, at
the extra cost of incrementing computation and communication costs up to the level of
solving problems with 11, 13 or 15 values per variable.
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The structure of the paper is as follows. In Section 2 we present the basic concepts
used in the paper. In Section 3 we discuss the privacy issues of DisFC algorithm. In
Section 4 we propose the new algorithm that may lie about the values agents take.
In Section 5 we provide experimental results. Finally, in Section 6 we extract some
conclusions from this work.

2 Preliminaries

A Constraint Satisfaction Problem (CSP) involves a finite set of variables, each one
taking a value in a finite domain. Variables are related by constraints that impose re-
strictions on the combinations of values that subsets of variables can take. A solution is
an assignment of values to variables which satisfies every constraint. Formally, a finite
CSP is defined by a triple (X , D, C), where

• X = {x1, . . . , xn} is a set of n variables;
• D = {D(x1), . . . , D(xn)} is a collection of finite domains; D(xi) is the initial set

of possible values for xi;
• C is a set of constraints among variables. A constraint Ci on the ordered set of vari-

ables var(Ci) = (xi1 , . . . , xir(i)) specifies the relation prm(Ci) of the permitted
combinations of values for the variables in var(Ci). An element of prm(Ci) is a
tuple (vi1 , . . . , vir(i)), vi ∈ D(xi).

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP where variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSP is defined by a 5-tuple (X , D, C, A, φ), where X , D and C are as before, and

• A = {1, . . . , p} is a set of p agents,
• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables divides C in two
disjoint subsets, Cintra = {Ci|∀xj , xk ∈ var(Ci), φ(xj) = φ(xk)}, and Cinter =
{Ci|∃xj , xk ∈ var(Ci), φ(xj) �= φ(xk)}, called intraagent and interagent constraint
sets, respectively. An intraagent constraint Ci is known by the agent owner of var(Ci),
and it is unknown by the other agents. Usually, it is considered that an interagent con-
straint Cj is known by every agent that owns a variable of var(Cj) [12].

As in the centralized case, a solution of a DisCSP is an assignment of values to
variables satisfying every constraint. DisCSPs are solved by the collective and coordi-
nated action of agents A. Agents communicate by exchanging messages. It is assumed
that the delay in delivering a message is finite but random. For a given pair of agents,
messages are delivered in the order they were sent.

For simplicity purposes, and to emphasize on the distribution aspects, in the rest
of the work we assume that each agent owns exactly one variable. We identify the
agent number with its variable index (∀xi ∈ X , φ(xi) = i). From this assumption, all
constraints are inter-agent constraints, so C = Cinter and Cintra = ∅. Furthermore, we
assume that all constraints are binary. A constraint is written Cij to indicate that it binds
variables xi and xj .
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3 Privacy and DisFC

There are two main concerns about privacy when solving DisCSP:

• Privacy of constraints: if agent i is constrained with agent j, i may want to keep
private on the part of the constraint known by itself, and the same may occur for j.
This generates the Partially Known Constraints model (PKC) described below.

• Privacy of assignments: agents do not want to reveal the values assigned to their
variables to other agents. This is especially relevant for the values of the solution.

3.1 The PKC Model for Constraint Privacy

To enforce constraint privacy, we proposed [2] the Partially Known Constraints (PKC)
model of a DisCSP as follows. A constraint Cij is partially known by its related agents.
Agent i knows the constraint Ci(j) where:

• var(Ci(j)) = {xi, xj};
• Ci(j) is specified by three disjoint sets of value tuples for xi and xj :

- prm(Ci(j)), the set of tuples that i knows to be permitted;
- fbd(Ci(j)), the set of tuples that i knows to be forbidden;
- unk(Ci(j)), the set of tuples which consistency is not known by i;

• every possible tuple is included in one of the above sets, that is, prm(Ci(j)) ∪
fbd(Ci(j)) ∪ unk(Ci(j)) = Di × Dj .

Similarly, agent j knows C(i)j , where var(C(i)j) = {xi, xj}. C(i)j is specified by the
disjoint sets prm(C(i)j), fbd(C(i)j) and unk(C(i)j) relative to j. Between a constraint
Cij and its corresponding partially known constraints Ci(j) and C(i)j it holds

Cij = Ci(j) ⊗ C(i)j

where ⊗ depends on the constraint semantics (see [4] for an example of this). The above
definitions satisfy:

• If the combination of values k and l, for xi and xj is forbidden in at least one partial
constraint, then it is forbidden in the corresponding total constraint.

• If the combination of values k and l, for xi and xj is permitted in both partial
constraints, then it is also permitted in the corresponding total constraint.

Here, we only consider constraints for which unk(C(i)j) = unk(Ci(j)) = ∅. Then,
a partially known constraint Ci(j) is completely specified by its permitted tuples and
prm(Cij) = prm(Ci(j)) ∩ prm(C(i)j).

For example, let us consider the n-pieces m-chessboard problem. Given a set of n
chess pieces and a m × m chessboard, the goal is to put all pieces on the chessboard in
such a way that no piece attacks any other. As DisCSP, the problem is formulated as,

• Variables: one variable per piece.
• Domains: all variables share the domain {1, . . . , m2} of chessboard positions (cells

are numbered from left to right, from top to bottom).
• Constraints: one constraint between every pair of pieces, from chess rules.
• Agents: one agent per variable.
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For instance, we can take n = 5 with the multiset of pieces {queen, castle, bishop,
bishop, knight}, on a 4 × 4 chessboard, with the variables,

x1 = queen, x2 = castle, x3 = bishop, x4 = bishop, x5 = knight.

If agent 1 knows that agent 5 holds a knight, and agent 5 knows that agent 1 holds a
queen, this is enough information to develop completely constraint C15 by any of them,

C15 = {(1, 8), (1, 12), (1, 14), (1, 15), . . .}

With the PKC model, agent 1 does not know which piece agent 5 holds. It only knows
how a queen attacks, from which it can develop the constraint,

C1(5) = {(1, 7), (1, 8), (1, 10), (1, 12), . . .}

Analogously, agent 5 does not know which piece agent 1 holds. Its only information is
how a knight attacks, from which it can develop the constraint,

C(1)5 = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), . . .}

The whole constraint C15 appears as the intersection of these two constraints,

C15 = C1(5) ∩ C(1)5 = {(1, 8), . . .}

C1(5) does not depend on agent 5. It codifies the way a queen attacks, independently of
any other piece.

3.2 Assignment Privacy on DisFC

To achieve assignment privacy, we proposed [2] the Distributed Forward Checking
(DisFC) algorithm as follows. In the centralized case, Forward Checking (FC) [6] fil-
ters future domains when the current variable is assigned, removing inconsistent values.
DisFC extends this idea to the distributed case. It performs an ABT-search, with the fol-
lowing differences. When a variable xi is assigned, instead of sending its value to the
connected agent j, it sends to j the part of Dj compatible with its value. Variable xj will
choose a new value consistently with xi (by selecting its new value from the received
filtered domain) but without knowing xi actual value.

To perform backtracking, variable xj should know some identifier of the value cur-
rently assigned to xi (otherwise, obsolete backtracking cannot be detected). In ABT
this identifier is the own value; instead, we propose to use the variable sequence num-
ber. Each variable keeps a sequence number that starts from 1 (or some random value),
and increases monotonically each time the variable changes its value, acting as a unique
identifier for each value. Messages including the sender value replace that value by the
sequence number of the sender variable. The agent view of the receiver is composed
by the sequence numbers it believes are hold by variables in higher priority agents.
Nogoods are formed by variables and their sequence numbers.

DisFC uses both strategies. Each DisFC agent sends filtered domains to other agent
variables, and it replaces its own value by its sequence number. This allows one agent to



98 I. Brito and P. Meseguer

exchange enough information with other agents to reach a global consistent solution (or
proving that no solution exists) without revealing its own assignment. DisFC algorithm
performs the same search as ABT, with the difference that a constraint is checked by
the higher priority agent when sending the filtered domain to the lower priority agent.
DisFC inherits the correctness and completeness properties of ABT. Similar to ABT, we
can prove that DisFC finds a solution or detects inconsistency in finite time.

3.3 DisFC Versions

In the PKC model, if agents i and j are constrained, i knows Ci(j) and j knows C(i)j ,
but none knows the total constraint Cij . Assuming this model, there are two versions of
DisFC. The first proposed was DisFC2 [2]. It consists of a cycle of two phases,

• Phase I. Constraints are directed forming a DAG, and a compatible total order of
agents is selected. Then, DisFC finds a solution with respect to constraints Ci(j),
where i has higher priority than j. If no solution is found, the process stops, indi-
cating unsolvable instance.

• Phase II. Constraints and the order of agents are reversed. Now C(i)j are consid-
ered, where j has higher priority than i. xj informs xi of its filtered domain with
respect to xj value. If the value of xi is in that filtered domain, i does nothing. Oth-
erwise, i sends a ngd message to j, which receives that message and does nothing.
Quiescence is detected.

If no ngd messages are generated in phase II, the solution provided in phase I also
satisfies C(i)j , so it is a true solution. Otherwise, phase I restarts. The nogoods generated
in phase II are considered by the receiver agents, now with low priority, so they can
change their values to find compatible ones. This cycle iterates until a solution is found
or the no solution condition is detected. This strategy is correct and complete.

Instead of checking a part of the constraints in phase I and verifying the proposed
solution in phase II, Zivan and Meisels proposed that all constraints could be tested
simultaneously [14]. Combining this idea with DisFC, we obtain the DisFC1 version,
that works as follows. An agent has to check all its partially known constraints with both
higher and lower priority agents. To do this, an agent has to inform to all its neighbors
agents when it takes a new value, and ngd messages can go in both directions (from
lower to higher as in ABT but also from higher to lower). DisFC1 inherits the good
properties of ABT-ASC [14]. DisFC1 is correct, complete and terminates.

Similar to DisFC, DisFC1 agents check consistency with respect to their partial con-
straints and detect obsolete nogood messages without revealing their assignments. Let
self be a generic agent. After an assignment, self informs all constraining agents (with
higher and lower priority) via ok? messages. Each ok? message contains the subset of
values for the message recipient that are consistent with self ’s assignment (filtered do-
main) and the sequence number corresponding to the self ’s assignment. In addition, if
a conflict exists between self ’s assignment and a previously received filtered domain
from a lower priority agent, a ngd message is sent to that agent.

When self receives an ok? message from a higher priority agent i, it checks C(i),self

looking for a consistent value. self discards those values which are inconsistent with
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procedure DisFC-1()
myV alue ← empty; end ← false; compute Γ+, Γ −;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp, qcc : end ← true;

procedure CheckAgentView()
if (myV alue = empty or myV alue eliminated by myNogoodStore) then

myV alue ← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each child ∈ Γ+(self) ∪ Γ −(self) do

sendMsg:ok?(child, mySeq,compatible(D(child), myV alue));
for each child ∈ Γ+(self) such that ¬ (myV alue ∈ MyFilteredDomain[child]) do

sendMsg:ngd(child, self = mySeq ⇒ ¬child.Assig);
else Backtrack();

procedure ResolveConflict(msg)
if coherent(msg.Nogood, Γ −(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView();

else if coherent(msg.Nogood, self ) then
SendMsg:ok?(msg.Sender, mySeq,compatible(D(msg.Sender), myV alue));

procedure Backtrack()
newNogood ← solve(myNogoodStore);
if (newNogood = empty) then

end ← true; sendMsg:stp(system);
else
sendMsg:ngd(newNogood);
UpdateAgentView(rhs(newNogood) ← unknown);
CheckAgentView();

function ChooseValue()
for each v ∈ D(self) not eliminated by myNogoodStore do

if consistent(v, myAgentV iew[Γ −]) then return (v);
else add(xj = valj ⇒ self �= v, myNogoodStore); /*v is inconsistent with xj’s value */

return (empty);

procedure UpdateAgentView(newAssig)
add(newAssig, myAgentV iew);
for each ng ∈ myNogoodStore do

if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);

procedure SetLink(msg)
add(msg.sender, Γ+(self));
sendMsg:ok?(msg.sender, myV alue);

procedure CheckAddLink(msg)
for each (var ∈ lhs(msg.Nogood))

if (var /∈ Γ −(self)) then
sendMsg:adl(var, self);
add(var, Γ −(self)); UpdateAgentView(var ← varV alue);

Fig. 1. The DisFC1 algorithm for asynchronous backtracking search
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higher priority agents. If no consistent value is found, self backtracks solving conflicts
in myNogoodStore, as in ABT, sending a ngd message. When self receives an ok?
message from a lower priority agent j, it checks Cself(j). If the assignments of self and
j are not consistent, self sends a ngd message informing to j that its assignment is not
valid for self ’s assignment. Otherwise, self does nothing. ngd messages are processed
in the same way, no matter if they come from higher or lower priority agents.

The code of DisFC1 appears in Figure 1. This code is concurrently executed by
each agent. In myAgentV iew, each agent stores the sequence number received from
its neighboring agents. In myNogoodStore, each agent stores received nogoods from
higher and lower agents. In myFilteredDomains, each agent saves the last filtered
domains received from its (higher and lower) neighbors. Γ− refers to agents related
to self with higher priority, while Γ+ refers to agents related to self with lower
priority.

Agents exchange five kind of messages: ok?, ngd, adl, stp and qcc. The mean-
ing of ok? and ngd messages has been described above. adl has the same uses as in
ABT and DisFC2: to connect unrelated agents. An extra agent called system controls
the termination of the algorithm by using stp and qcc messages. When an agent finds
inconsistency it sends an stp message to system. When system receives an stp mes-
sage from one agent or detects quiescence in the network (i.e. no message has traveled
through the network in the last tquies units of time), system sends messages to all agents
informing them to finish the search. In former case, system sends stp messages to all
agents, which is to say that the problem is unsolvable. In latter case, system sends qcc
messages, which is to say that the problem has at least one solution which is given
by the current variables’ assignments. Quiescence state can be detected by specialized
algorithms [5].

3.4 Breaking Privacy

Comparing DisFC with ABT, the basic difference is as follows. If agent i is constrained
with j and i has higher priority, instead of sending the actual value of i to j, it sends
the subset of Dj that is compatible with the actual value of i. After reception, j does
not know the actual value of i, but it knows a complete row of Ci(j) without knowing
its position in the matrix. As search progresses, j may store new rows of Ci(j). At the
end, j has a subset of rows without knowing their position. In addition, some search
episodes (changing from phase I to phase II in DisFC2, nogood messages from high
to low priority agents in DisFC1) may reduce the number of acceptable positions for
a particular row [8]. With all this, j may construct a CSP instance where the variables
are the rows, their domains are the acceptable positions, under the constraints that two
different rows cannot go to the same position and every row must get a position. Com-
puting all solutions of this instance we obtain all matrixes which are compatible with
the information obtained from the search. Of them, one is Ci(j). So to break privacy,
all solutions of this CSP instance have to be computed (an NP-hard task). In practice,
solving this instance requires significant effort and in some cases subsumption testing
is required.



Distributed Forward Checking May Lie for Privacy 101

4 DisFC May Lie

To enhance privacy in DisFC we propose that agents could lie. Instead of sending true
rows of Ci(j), the algorithm may send true and false rows. Each false row represents a
lie. False rows will make much more difficult the hypothetical reconstruction of Ci(j) by
agent j, but it has to be done keeping the soundness and completeness of the algorithm.

This idea can be formalized as follows. If i has d values Di = {v1, v2, . . . , vd}, it
is assumed that i has an extended domain D′

i = {v1, v2, . . . , vd, vd+1, . . . , vd+k} of
d+k values. We call true values the first d values, while the rest are false values. When
i assigns the true value vp, 1 ≤ p ≤ d, it sends to agent j the subset of values that
are compatible with vp (that is, a true row of Ci(j)). When i assigns the false value
vq, d < q ≤ d + k, it sends an invented subset of compatible values to j (that is a row
which does not exist in Ci(j)). The only concern that an agent must have after assigning
a false value is that it must tell the truth (assign a true value or perform backtracking
if no more true values are available) in finite time. The point is that no solution could
be based on a false value, so assignments including false values have to be removed in
finite time (in fact, in a shorter time than required to detect quiescence).

4.1 The DisFClies Algorithm

DisFC1 offers a better platform for privacy than DisFC2, because it has no synchro-
nization points between phases. For this reason, we implement the lies idea on top of
DisFC1 (although it can also be implemented on top of DisFC2).

We call DisFClies the new version of DisFC1 where agents may exchange false
pruned domains. DisFClies appears in Figure 2. It includes most of the procedures,
functions and data structures of DisFC1, and uses the same types of messages. Each
agent has a local clock to control when it has to tell the truth after a lie. In the structure
FalseDomains, each agent puts away the false domains that it will send to its neigh-
bors for each false value the agent’s variable can take. Dtrue(self) is the set of true
values for self , while Dfalse(self) is the set of its false values. D(self) is the union
of these two sets.

In the main procedure, self first initializes its data structures and generates the false
domain that it will sent for each false value. Secondly, self assigns a value to its vari-
able by invoking the function CheckAgentV iew. This value may be false or not. Then,
self enters in a loop, where incoming messages are received and processed. This loop
ends, and therefore the algorithm, when self receives either an stop or a qcc message
from system. This is a special agent that handles these messages in the same way it did
in DisFC1. If self ends the search because a qcc message, it means that a problem has
at least one solution, otherwise, the problem is unsolvable. Quiescence state can be de-
tected by specialized algorithms [5]. However, in order to assure the completeness and
soundness of the algorithm, the time tquies required by system to assure quiescence in
the network (i.e no message has traveled through the network within the last tquies units
of time) must be larger than tlies, the maximum time agents may wait until rectifying
their lies, thus tlies < tquies.

In the following, we prove that DisFClies is sound, complete and terminates.



102 I. Brito and P. Meseguer

procedure DisFClies()
myV alue ← empty; end ← false; compute Γ+, Γ −; tsaytrue ← 0;
for each value ∈ Dfalse(self) do

for each neig ∈ Γ+(self) ∪ Γ −(self) do generate FalseDomain[value][neig];
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp, qcc : end ← true;

if (value ∈ Dfalse(self)) and (gettime() ≥ tsaytrue) then TakeATrueValue();

procedure CheckAgentView()
if (myV alue = empty or myV alue eliminated by myNogoodStore) then

myV alue ← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
if (myV alue ∈ Dfalse(self)) then

for each neig ∈ Γ+(self) ∪ Γ −(self) do
sendMsg:ok?(neig, mySeq, FalseDomain[myV alue][neig]);

tsaytrue ← gettime() + tlies; /* tlies < tquies */
else

for each neig ∈ Γ+(self) ∪ Γ −(self) do
sendMsg:ok?(neig, mySeq,compatible(D(neig), myV alue));

for each child ∈ Γ+(self) such that ¬ (myV alue ∈ MyFilteredDomain[child]) do
sendMsg:ngd(child, self = mySeq ⇒ ¬child.Assig);

tsaytrue ← 0;
else Backtrack();

procedure ResolveConflict(msg)
if coherent(msg.Nogood, Γ −(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView();

else if coherent(msg.Nogood, self ) then
if (myV alue ∈ Dfalse(self)) then
sendMsg:ok?(neig, mySeq, FalseDomain[myV alue][neig]);

else
SendMsg:ok?(msg.Sender, mySeq,compatible(D(msg.Sender), myV alue);

procedure TakeATrueValue()
tsaytrue ← 0; myV alue ← ChooseATrueValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each neig ∈ Γ+(self) ∪ Γ −(self) do

sendMsg:ok?(neig, mySeq,compatible(D(neig), myV alue);
for each child ∈ Γ+(self) such that ¬ (myV alue ∈ MyFilteredDomain[child]) do

sendMsg:ngd(child, self = mySeq ⇒ ¬child.Assig);
else Backtrack();

function ChooseATrueValue()
for each v ∈ Dtrue(self) not eliminated by myNogoodStore do

if consistent(v, myAgentV iew[Γ −]) then return (v);
else add(xj = valj ⇒ self �= v, myNogoodStore); /*v is inconsistent with xj’s value */

return (empty);

Fig. 2. The DisFClies algorithm for asynchronous backtracking search. Missing proce-
dures/functions appear in Figure 1.
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4.2 Theoretical Results

Lemma 1. When DisFClies finds a solution, the last filtered domain received by agent
i from agent j corresponds to a (true) row in the partial constraint matrix Ci(j).

Proof. For DisFClies the current variables’ assignments are a solution if no constraint
is violated and network has reached quiescence. Let us assume that DisFClies reports
a solution in which variable xi takes a false value. So the last filtered domains sent by
agent i are false too. However, DisFClies requires that, after lying, an agent must rectify
in finite time. That is, assigning a true value and sending to its neighbors the true filtered
domains, or performing backtrack. So, at least one ok? message or a ngd message has
traveled through the network after i lied, in contradiction with the initial assumption
that the network had reached quiescence. Therefore, the solution condition cannot be
reached unless true filtered domains are sent in the last messages from any agent. �

Proposition 1. DisFClies is sound.

Proof. If a solution is claimed, we have to prove that current agents’ assignments
satisfy their partial constraints. Lemma 1 shows that if DisFClies reports a solution the
last variables’s assignments correspond to true values. Therefore, one can prove that
DisFClies is sound by using the same arguments to prove that DisFC1 is sound.

Let us assume quiescence in the network. If the current assignment is not a solution,
there exists at least one partial constraint that is violated by agent j. In that case, agent
j has sent a ngd message to agent i, the closest agent involved in the conflict. This
ngd is either discarded as obsolete or accepted as valid by agent i. If the message is
discarded, it means that some message has not yet reached its recipient, which breaks
our assumption of quiescence in the network. If the message is valid, i has to find a new
consistent values, which will produce several ok? messages or one new ngd message,
which again breaks our assumption of quiescence in the network. �

Proposition 2. DisFClies is complete.

Proof. Considering only nogoods based on true values, we can prove that DisFClies is
complete by using the same arguments to prove that DisFC1 is complete. Since nogoods
resulting from an ok? message are redundant with respect to the partial constraint ma-
trixes, and the additional nogoods are generated by logical inference, the empty nogood
cannot be inferred if the problem is solvable.

Let us prove that DisFClies cannot infer inconsistency based on false values if the
problem is solvable. Suppose that agent j detects inconsistency because a lie introduced
by agent i. We know that j detects inconsistency when it infers an empty nogood.
Besides, we know that the left-hand side of the nogoods (justifications of forbidden
values) stored by j is either empty or includes agents with higher priority than j. Since
we assume that inconsistency discovered by j is based on the false value of i, i is before
j in the agents’ ordering and there is at least one nogood stored by j including i in its
left-hand side. Therefore, when j finds no consistent value, it has to send a backtracking
messages to i, which breaks our assumption that j derives an empty nogood. �

Lemma 2. DisFClies agents will not store indefinitely nogoods based on false values.
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Proof. Let us assume that a false nogood (i.e. a nogood including an agent with a false
value) will be stored indefinitely by an agent. In that case, the lying agent cannot change
its variable’s assignment, otherwise the nogood will become obsolete and, therefore,
deleted by the holder agent. But a lying agent must tell the truth in finite time. So, in
finite time, the agent storing the false nogood will be informed of a new true value, the
false nogood will become obsolete and, therefore, it will be deleted by the holder agent.
This breaks our assumption that the false nogood lasts forever. �

Proposition 3. DisFClies terminates.

Proof. By Lemma 2, nogoods based on false values are discarded in finite time. About
nogoods based on true values, DisFClies performs the same treatment as DisFC1. Since
DisFC1 terminates in finite time, DisFClies also terminates in finite time. �

Proposition 4. If a DisFClies agent detects inconsistency, every agent directly con-
nected with it has received d true rows.

Proof. Let i be that agent. If i finds the empty nogood, it means that there is a nogood
for every true value of i. These nogoods have an empty left-hand side (otherwise, i
could not deduce the empty nogood). So they have been produced as result of ngd
messages coming from the lower priority agents. Therefore, every possible true value
of i has been taken, so i has sent to its neighbors d true rows. �

4.3 Privacy Improvements of DisFClies

The inclusion of false values has two direct consequences. First, agent j may receive
false rows of Ci(j). Then j has more difficulties to reconstruct Ci(j), since it is uncertain
whether some received rows truly belong to Ci(j) or not. Second, this strategy decreases
performance, because any computation that includes a false assignment will not produce
any solution, so it is a wasted effort, only useful for privacy purposes.

For a solvable instance, Lemma 1 shows that the last assignments correspond to true
values. So, agent j knows that the last message from i correspond to a true assign-
ment, and it contains a true row of Ci(j). Agent j cannot discriminate whether previous
assignments are true or false, so it cannot include the rows of these messages when
trying to compute Ci(j). So j knows a single row of Ci(j) but it does not know its lo-
cation. The number of different constraint matrixes compatible with this information is
approximately d · 2(d2−d) (d, the number of possible locations for the true row, times
2(d2−d), the number of compatible matrixes when d elements are known). This is a big
difference with the approach without lies, where all received rows truly belong to Ci(j).

For an unsolvable instance, Proposition 4 shows that every agent j directly connected
with the agent i that detects inconsistency would have received d true rows. In addition,
since all possibilities have been tried, they have received d + k rows (observe that j
cannot receive more than d + k rows). Assuming that j has received d + k different
rows, if j wants to compute Ci(j), it has to select d rows, take them as true rows and

solve the corresponding CSP. j has to repeat this process

(
d + k

d

)

times, that is, once

for each different subset of d rows. This increases the number of CSPs to solve, in
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order to compute the matrixes compatible with the leaked information. However, j may
have received less than d + k different rows. In that case, j considers that some rows
are repeated. If there is no way to identify repeated rows, in addition to the previously
described combinations, we have to consider each possible row as possible repeated,
increasing greatly the number of CSP instances to solve. As consequence, the privacy
level of the solving process is improved.

5 Experimental Results

In this Section, we compare the performance of DisFC1 and DisFClies solving in-
stances of binary random classes. A binary random class is defined by 〈n, d, p1, p2〉,
where n is the number of variables, d the number of values per variable, p1 the network
connectivity (the ratio of existing constraints) and p2 the constraint tightness (the ratio
of forbidden value pairs). We solved instances of the class 〈15, 10, 0.4, p2〉 with varying
tightness (p2) between 0.1 to 0.9 in increments of 0.1. For creating these instances in
PKC, first we generate random instances and then we split the forbidden tuples of each
constraint between its two partial constraints.

We consider three versions of DisFClies that differ from each other in the number of
false values that their agents add to initial domains: 1, 3 and 5 false values. Results for all
algorithms were produced using a simulator, in which agents are individual processes.
Agents are activated randomly. When an agent takes a value, it chooses between true
and false values with probability 0.5. tlies is randomly chosen between 1 and 99 internal
units of time. Messages are processed by packets, as described in [3].

Algorithmic performance is evaluated by communication effort, computation cost
and privacy of constraints. Communication effort is measured by the total number
of exchanged messages (msg). Computation cost is measured by the number of non-
concurrent constraint checks (nccc) [7]. Privacy of constraints is measured by the num-
ber of constraint matrixes consistent with the information exchanged among agents.
Generally, lower priority agents work more than higher priority ones, therefore they re-
veals more information than higher priority ones. Thus, we report the minimum (min),
median (med) and average (avg) of the numbers of constraint matrixes that are consis-
tent with information exchanged among agents.

Figure 3 shows the computation and communication costs. In both plots, results are
averaged on 100 instances. In terms of computation cost, we observe that DisFClies is
more costly than DisFC, and the cost increases with the number of allowable lies. The
differences between algorithms are greater at the difficulty peak (p2 = 0.6). Except
for p2 = 0.5, DisFClies(5) always requires more nccc than the others, while DisFC
performs the lowest number of nccc. Similar results appear for communication costs.

Table 1 contains the values of parameters min, med and avg to measure the privacy
of constraints. Larger values mean higher privacy. The critical privacy occurs when
the number of constraint matrixes is 1 (at least one agent knows exactly the partial
constraint matrix of one of its constraining agents). Regarding privacy of constraints in
DisFC1, the values of min and med decrease when p2 increases. Actually, in problems
with constraint tightness greater than 0.4, at least one agent can infer exactly the partial
constraint of one of its constraining agents (see column min). From med values in



106 I. Brito and P. Meseguer

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n
c
c
c

p2

Solving <n = 15, m = 10, p1 = 0.40>

DisFC1
DisFC1-lies(1)
DisFC1-lies(3)
DisFC1-lies(5)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
s
g

p2

Solving <n = 15, m = 10, p1 = 0.40>

DisFC1
DisFC1-lies(1)
DisFC1-lies(3)
DisFC1-lies(5)

Fig. 3. Computation and communication cost of DisFC and versions of DisFClies

unsolvable instances (p2 ≥ 0.6), we conclude that approximately in half of partial
constraint matrixes all rows are revealed during search since 106 is close to 10! =
3.6×106 (the number of permutations of 10 rows). In terms of avg, higher privacy loss
occurs at the complexity peak (p2 = 0.6).

Regarding privacy of constraints in DisFClies, we notice the following. In solvable
instances (0.1 ≤ p2 ≤ 0.5), DisFClies versions achieve the same level of privacy for
min, med and avg, no matter the number of allowable lies. This occurs since each
agent can only assure that the last filtered domain received from another agent truly
corresponds to a row in the partial constraint matrix of that agent (see Lemma 1), which
is independent to the number of false values that agents may have. In terms of min
and med, DisFClies versions are more private than DisFC1. In unsolvable instances,
DisFClies versions have different level of privacy when considering min. DisFClies(5)
is one and two orders of magnitude more private than DisFClies(3) and DisFClies(1),
respectively. DisFClies(1) is the least private of these three algorithms although it is
more private than DisFC. DisFClies versions are equally private with respect to med
and avg. For these parameters, DisFClies versions are more private than DisFC1.

Table 1. Privacy of constraints measured by the minimum (min), median (med) and average
(avg) of the numbers of consistent constraint matrixes. Averaged on 10 instances.

DisFC1 DisFClies(1) DisFClies(3) DisFClies(5)
p2 min med avg min med avg min med avg min med avg
0.1 1023 1028 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.2 1023 1027 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.3 1016 1024 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.4 107 1014 1028 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.5 1 109 1025 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.6 1 106 109 3.3 1030 1029 20 1030 1029 221 1030 1029

0.7 1 106 1012 2 1030 1029 10.7 1030 1029 163 1030 1029

0.8 1 106 1010 2.3 1030 1029 50.3 1030 1029 270 1030 1029

0.9 1 106 1010 3.3 1030 1029 25.3 1030 1029 426 1030 1029
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6 Conclusion

From this work we can extract the following conclusions. First, lying is a suitable strat-
egy to enhance privacy in DisCSP solving. We have presented DisFClies, a new version
of the DisFC algorithm that may tell lies, sending false compatible domains to neigh-
bor agents. The unique extra condition is that, after a lie, the lying agent has to tell the
truth in finite time, lower than tquies. We have proved that this algorithm is correct,
complete and terminates. Second, we have shown analytical and experimentally that
this idea effectively enhances constraint privacy in the PKC model, because it increases
the number of partially known constraint matrixes that are compatible with the leaked
information of the solving process. And third, although solving DisCSP lying is more
costly than solving it without lies, experiments show that the extra cost required is not
unreachable. It is clear that any strategy used to conceal information will have an ex-
tra cost, and this approach is not an exception. We believe that this approach could be
useful for those applications with high privacy requirements.
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Abstract. We present in this paper a first-order extension of the solver
of Prolog III, by giving not only a decision procedure, but a full first-
order constraint solver in the theory T of the evaluated trees, which is
a combination of the theory of finite or infinite trees and the theory
of the rational numbers with addition, subtraction and a linear dense
order relation. The solver is given in the form of 28 rewriting rules which
transform any first-order formula ϕ into an equivalent disjunction φ of
simple formulas in which the solutions of the free variables are expressed
in a clear and explicit way. The correctness of our algorithm implies the
completeness of a first-order theory built on the model of Prolog III.

1 Introduction

The algebra of finite or infinite trees plays a fundamental role in computer sci-
ence: it is a model for data structures, program schemes and program executions.
As early as 1976, G. Huet proposed an algorithm for unifying infinite terms, that
is solving equations in that algebra [13]. B. Courcelle has studied the properties
of infinite trees in the scope of recursive program schemes [7]. A. Colmerauer
has described the execution of Prolog II, III and IV programs in terms of solving
equations and disequations in that algebra [4,3,1].

The unification of finite terms, i.e. solving conjunctions of equations in the
theory of finite trees has first been studied by A. Robinson [24]. Some algo-
rithms with better complexities have been proposed after by M.S. Paterson and
M.N.Wegman [22] and A. Martelli and U. Montanari [21]. A good synthesis
on this field can be found in the paper of J.P. Jouannaud and C. Kirchner
[15]. Solving conjunctions of equations on infinite trees has been studied by G.
Huet [13], by A. Colmerauer [5] and by J. Jaffar [14]. Solving conjunctions of
equations and disequations on finite or infinite trees has been studied by H.J.
Burckert [2] and A. Colmerauer [4]. An incremental algorithm for solving con-
junctions of equations and disequations on rational trees has then been proposed
by V.Ramachandran and P. Van Hentenryck [23].

On the other hand, M.J. Maher has axiomatized the theory of finite or infinite
trees and showed its completeness using a decision procedure which transforms
any first-order formula into a Boolean combination of quantified conjunctions
of atomic formulas [19]. A much more general decision procedure was recently
given by K. Djelloul in the frame of decomposable theories [12].
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We have then extended Maher’s theory of finite or infinite trees by giving a
complete first-order axiomatization of the evaluated trees which are a combi-
nation of finite or infinite trees with construction operations and the rational
numbers with addition, subtraction and a linear dense order relation [9]. This
theory, denoted by T , reflects essentially to Prolog III which has been modeled
by A. Colmerauer [3] using a combination of trees and rational numbers. Never-
theless, the solver of Prolog III is not able to solve arbitrary quantified first-order
constraints built on a combination of trees and rational numbers.

A first attempt of an extension of the solver of Prolog III was given in [11]. It
consists in a decision procedure which for every proposition (formula without free
variables) gives either true of false in T . Unfortunately, this decision procedure is
not able to solve first-order constraints having free variables. In fact, it does not
warrant that the solutions of the free variables of a solved formula are expressed
in a clear and explicit way and can even produce, starting from a formula ϕ which
contains free variables, an equivalent solved formula φ having free variables but
being always false (or always true) in T . The appropriate solved formula of ϕ in
this case should be the formula false (or the formula true) instead of φ.

Much more elaborated algorithms are then needed, specially when we want
to induce solved formulas expressing solutions of complex first-order constraint
satisfaction problems in T . Of course, our goal in these kinds of problems is not
only to know if there exist solutions or not, but to express these solutions in the
form of a solved formula which is either the formula true (i.e. the problem is
always satisfiable) or the formula false (i.e. the problem is always unsatisfiable)
or a simple first-order formula which is neither equivalent to true nor to false
and where the solutions of the free variables are expressed in a clear and explicit
way. Algorithms which are able to produce such a formula are called first-order
constraint solvers.

We present in this paper, not only a decision procedure, but a full first-order
constraint solver which gives clear and explicit solutions for any first-order con-
straint satisfaction problem in T . Our solver is not simply a combination of an
algorithm over trees with one over rational numbers, but a powerful mechanism
to solve mixed constraints. It includes full systems of typing deduction and con-
straint simplification and propagation. One of the major difficulties in this work
resides in the fact that (i) the theory of finite or infinite trees does not accept
full elimination of quantifiers, (ii) every algorithm deciding propositions in the
theory of finite or infinite trees has a non-elementary complexity [25] and (iii)
the function symbols + and − of T have two different behaviors whether they
are applied on trees or rational numbers. For example +(1, 1) is the rational
number 2, while +(1, f0) is the tree whose root is labeled + and whose sons are
1 and the tree’s constant f0.

One of the practical applications of our solver is a powerful extension of the
internal solver of Prolog III by allowing the user to handle general first-order
constraints and solve them in T . The solver will then give the solutions of the
free variables in all the models of T and present them in a clear and explicit
way. As far as we know, this is the first algorithm which is able to do a such
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work. Solving quantified constraints over trees and rational numbers can also be
used in PSPACE-complete decision problems from areas such as planning under
uncertainty, adversary game playing, and model checking. For example, in game
playing we may want to find a winning strategy for all possible moves of the
opponent. In a manufacturing problem it may be required that a configuration
must be possible for all possible sequences of user choices. Finally, when planning
in a safety critical environment, such as a nuclear power station, we require that
an action is possible for every eventuality.

The paper is organized in four sections followed by a conclusion. This introduc-
tion is the first section. In Section 2 we present the theory of the evaluated trees
and introduce an example of a complex constraint in this theory. In Section 3,
we define the notions of basic formulas, blocks and solved blocks in T which are
particular conjunctions of atomic formulas. We end this section by showing that
every quantified solved block can be decomposed in three embedded sequences
of quantifications having particular properties which enable us to eliminate some
quantifiers. In Section 4, we present the working formulas, the general solved for-
mulas and the algorithm of constraint solving in T . The algorithm is presented in
the form of 28 rewriting rules and transforms an initial working formula of depth
d into a final working formula of depth less than or equal to three. The main idea
behind this algorithm consists in (1) a top-down simplification and propagation
of constraints. In each level, quantified blocks are locally solved, decomposed and
then propagated to the embedded sub-formulas. Inconsistent sub-formulas are
also removed (2) a bottom-up elimination of quantifiers and working formulas’
depth decrease using distribution. The disjunction φ of general solved formulas
extracted from the final working formula is either the formula false or true or a
formula having at least one free variable, being equivalent neither to false nor
to true in T , and where the solutions of the free variables are expressed in a
clear and explicit way. We end this section by giving an example of a constraint
having two free variables but being always false in T .

The algorithm represented by a set of rewriting rules and the general solved
formulas are our main contribution in this paper. The expressiveness and clear-
ness of the solutions of the free variables in the final solved formula are our main
goal in this work.

2 Theory T of Evaluated Trees

2.1 Preliminaries

Let F be an infinite set of function symbols containing the symbols +, −, 0 and
1. To each element of F is associated a non-negative integer, its arity. The arities
of +, −, 0 and 1 are respectively 2, 1, 0 and 0. Let R = {<,num , tree } be the
set of relation symbols, of respective arities 2, 1 and 1. Let V be an infinite
countable set of variables. A term is an expression of the form x or ft1 . . . tn
where n ≥ 0, f an n-ary symbol in F and the ti’s are shorter terms. A formula
is an expression of the forms:

s= t, rt1..tn, true, false, ¬(ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ψ), (ϕ↔ψ), ∃xϕ, ∀xϕ,
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where x ∈ V , s, t and the ti’s are terms, r is an n-ary relation symbol in R
and ϕ and ψ are shorter formulas. The first four forms are called atomic. An
occurrence of a variable x in a formula is bound if it occurs in a sub-formula of
the form (∃xϕ) or (∀xϕ). It is free otherwise. The free variables of a formula are
those which have at least a free occurrence in the formula. For each formula ϕ,
we denote by var(ϕ) the set of all the free variables of ϕ. Let x̄ = x1 . . . xn and
ȳ = y1 . . . yn be two vectors of variables of the same length. The empty vector
is denoted by ε. Let ϕ and ϕ(x̄) be formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧
i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

Semantically, the new quantifiers ∃? and ∃! simply mean ”at most one” and
”one and only one”.

2.2 Axiomatization of T

Let a be a positive integer and let t1, ..., tn be terms. Let us denote by:

– t1 < t2, the term < t1t2,
– t1 + t2, the term +t1t2,
– t1 + t2 + t3, the term +t1(+t2t3),
– 0t1, the term 0,

– at1, the term t1 + · · · + t1︸ ︷︷ ︸
a

,

– −at1, the term (−t1) + · · · + (−t1)
︸ ︷︷ ︸

a

.

The theory T of the evaluated trees is the set of first-order propositions of the
following forms:

1 ∀x̄∀ȳ ((tree f x̄) ∧ (tree f ȳ) ∧ f x̄ = f ȳ) →
∧

i xi = yi ,
2 ∀x̄∀ȳ f x̄ = gȳ → num f x̄ ∧ num gȳ ,
3 ∀x̄∀ȳ ((

∧
i∈I num xi) ∧ (

∧
j∈J tree yj )) → (∃!̄z

∧
k∈K (tree zk ∧ zk = tk (x̄ , ȳ , z̄ ))),

4 ∀x∀y x < y → (num x ∧ num y),
5 ∀x∀y num x + y ↔ num x ∧ num y ,
6 ∀xnum − x ↔ num x ,
7 ∀x̄ tree hx̄ ,
8 ∀x∀y (num x ∧ num y) → x + y = y + x ,
9 ∀x∀y∀z (num x ∧ num y ∧ num z) → x + (y + z) = (x + y) + z ,
10 ∀xnum x → x + 0 = x ,
11 ∀xnum x → x + (−x) = 0 ,
12n ∀xnum x → (nx = 0 → x = 0 ),
13n ∀xnum x → ∃!y num y ∧ ny = x ,
14 ∀xnum x → ¬x < x ,
15 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
16 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
17 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
18 ∀xnum x → (∃y num y ∧ x < y),
19 ∀xnum x → (∃y num y ∧ y < x),
20 ∀x ∀y ∀z (num x ∧ num y ∧ num z) → (x < y → (x + z < y + z)),
21 ∀x (¬num x) ↔ tree x
22 0 < 1,
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where n is a non-null integer, f and g are two distinct function symbols taken
from F , h ∈ F − {+, −, 0, 1}, x, y, z are variables, x̄ is a vector of variables
xi, ȳ is a vector of variables yi, z̄ is a vector of distinct variables zi, I and J
are finite possibly empty sets, and where tk(x̄, ȳ, z̄) is a term which begins by
a function symbol fk element of F − {0, 1} followed by variables taken from
x̄ or ȳ or z̄. Moreover, if fk ∈ {+, −} then tk(x̄, ȳ, z̄) contains at least one
variable taken from ȳ or z̄. The axiom 3 shows that all models of T contain
infinite trees. In fact we have T |= ∃!z z = fz ∧ tree z for I = J = ∅. In this
case, the tree z is an infinite tree of the form f(f(f(...))). Note that we have not
T |= ∀xnum x → (∃!z z = x+x∧tree z ), since we have T |= num x ↔ num (x+x )
according to axiom 5 which contradicts tree z and z = x + x. This is why we
have a condition if fk belongs to {+, −}.

This theory has as model (possibly) infinite trees whose nodes are labelled
by Q∪F such that each subtree labelled by Q∪{+, −} is evaluated in Q and
reduced to a leaf labeled by an element of Q.

Let us now introduce an example of constraints in T . Let us consider the fol-
lowing two-player game: An ordered pair (n, m) of non-negative rational num-
bers is given and one after another each player subtracts 1 or 2 from n or m but
keeping n and m non-negative. The first player who cannot play any more has
lost.

Suppose that it is the turn of player A to play. A position (n, m) is called
k-winning if, no matter the way the other player B plays, it is always possible
for A to win, after having made at most k moves. The constraint expressing that
a position x is k-winning is:

winningk(x) ↔

⎡

⎢
⎢
⎣

∃ymove(x, y) ∧ ¬(∃xmove(y, x)∧
¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(. . . ∧
¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(false )) . . .)

︸ ︷︷ ︸
2k

⎤

⎥
⎥
⎦

Each position (n, m) is represented by c(i, j) with c a function symbol of arity 2
and i, j ∈ Q. The constraint move(x, y) is defined by

⎡

⎢
⎢
⎢
⎢
⎣

(∃i∃j x = c(i, j) ∧ y = c(i − 1, j) ∧ i > 1 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i − 2, j) ∧ i > 2 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 1) ∧ i > 0 ∧ j > 1)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 2) ∧ i > 0 ∧ j > 2)∨
(¬(∃i∃j x = c(i, j) ∧ num i ∧ num j ) ∧ x = y)

⎤

⎥
⎥
⎥
⎥
⎦

By replacing the definition of move in the constraint winningk(x), we have a
first-order constraint with one free variable x in the theory T of evaluated trees.
Solving this constraint means finding all the positions x which are k-winning.

3 Block and Quantified Block in T

We will now present structured formulas called blocks and show some of their
properties. Essentially a block is a conjunction of atomic formulas where all
the variables are well typed and which gives enough informations to be locally
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solved. We will also define a mechanism to decompose each quantified block in
three quantified blocks having interesting properties that will help us for solving
first-order constraints on quantified blocks.

3.1 Basic Formula and Block in T

Suppose that the variables of V are ordered by a linear strict and dense order
relation without endpoints, denoted by “ � ”. For each formula ϕ, the bound
variables are renamed such that for each sub-formula of ϕ we have x � y for
each bound variable x and each free variable y. We denote by Σn

i=1ti the term
t1 + . . . + tn + 0 with t1 + . . . + tn the term t1 + . . . + tn where all the terms 0
have been removed.

Let f ∈ F − {0, 1}, a0 ∈ Z and ai ∈ Z. We call leader of the equation x0 =
fx1...xn or x0 = x1 the variable x0. We call leader of the formula Σn

i=1aixi = a01
the greatest variable xk (in the order �) such that ak = 0.

Let f ∈ F , a0 ∈ Z and ai ∈ Z. We call basic formula every conjunction α of
formulas of the form:

– true, false , num x, tree x ,
– x = y, x = fy1...yn, Σn

i=1aixi = a01, Σn
i=1aixi < a01.

The formulas num x and tree x are called typing constraints. The formulas x = y,
x = fy1...yn, Σn

i=1aixi = a01 are called equations. The formula Σn
i=1aixi < a01

is called inequation. Let α be a basic formula:

(1) We say that “num x is a consequence of α” iff α contains at least one of the
following sub-formulas: num x , x = y ∧ num y, y = x ∧ num y, x = −y ∧ num y,
y = −x∧num y, z = y+x∧num z , z = x+y∧num z , x = y+z∧num z ∧num y,
x = 0, x = 1, Σiaixi = a01 or Σiaixi < a01 and x is one of the xi’s.

(2) We say that “tree x is a consequence of α” iff α contains at least one of
the following sub-formulas: tree x , x = y ∧ tree y, y = x ∧ tree y, x = −y ∧ tree y,
y = −x ∧ tree y, x = y + z ∧ tree z , x = z + y ∧ tree z , y = x + z ∧ tree y ∧ num z ,
y = z + x ∧ tree y ∧ num z , x = hy1...yn, with h ∈ F − {+, −, 0, 1}.

(3) We call tree-section of α the conjunction αt of the sub-formulas of α of
the form:

– true, tree x ,
– x = y or x = fy1...yn, with f ∈ F − {0, 1} and where x is such that tree x is

a sub-formula of α.

This tree-section αt is called formatted iff all the left-hand sides of the equations
of αt are distinct and for each equation x = y of αt we have x � y.

(4) We call numeric-section of α the conjunction αn of sub-fomulas of α of
the form:

– true, false , Σn
i=1aixi = a01, Σn

i=1aixi < a01, num x ,
– x = y, x = −y, x = y + z, where x is such that num x is a sub-formula of α.

This numeric-section αn is called consistent iff T |= ∃x̄ αn with x̄ = var(αn) and
formatted iff
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– αn does not contain sub-formulas of the form x = y, x = −y, x = y + z,
0 = a01, 0 < a01, with a0 ∈ Z

– αn is consistent and each leader of the equations of αn has one occurrence
in only one the equations of αn and no occurrence in the inequations of αn.

(5) The variable u is called reachable in ∃x̄α if u is a free variable in ∃x̄α or
α has a sub-formula of the form y = t(u) ∧ tree y with t(u) a term containing u
and y a reachable variable. In the last case, the equation y = t(u) is also called
reachable in ∃x̄α.

Example: In the formula ∃xyz w = fxy∧z = v∧ tree w , the variables w, v, x, y
are reachable because w, v are free and x and y occur in the sub-formula w =
fxy ∧ tree w . The variable z is not reachable and since z is bound and v is free,
they must be such that z � v. The equation w = fxy is reachable while the
equation z = v is not.

We call block every basic formulas α such that for each variable x in α either
num x or tree x is a sub-formula of α and α does not contain sub-formulas of the
form:

– x = 0 ∧ tree x , x = 1 ∧ tree x ,
– x = y ∧ num x ∧ tree y, x = y ∧ tree x ∧ num y,
– x = −y ∧ tree x ∧ num y, x = −y ∧ num x ∧ tree y
– x = y + z ∧ num x ∧ tree y, x = y + z ∧ num x ∧ tree z , x = hȳ ∧ num x ,
– x = y + z ∧ tree x ∧ num y ∧ num z ,
– Σn

i=1aixi = a01 ∧ tree xk , Σn
i=1aixi < a01 ∧ tree xk

with h ∈ F − {+, −, 0, 1}, k ∈ {1, ..., n}, a0 ∈ Z and ai ∈ Z.
Since each variable x in a block is typed i.e. occurs in a sub-formula of the

form num x or tree x , every block α can be divided into two disjoint sections: a
tree-section and a numeric-section.

A block α without equations is called relation block. A block α without inequa-
tions and where each variable has an occurrence in at least one of the equations
of α is called equation block. A block α is called solved iff its tree-section and
numerical-section are formatted.

3.2 Decomposition of Quantified Solved Blocks

Let ψ be a formula. Let x̄ be a vector of variables and α a solved block such
that for all unreachable quantified variable u in ∃x̄α and all reachable quantified
variable v in ∃x̄α we have u � v. We call decomposition of the formula ∃x̄α ∧ ψ
the formula

∃x̄1 α1 ∧ (∃x̄2 α2 ∧ (∃x̄3 α3 ∧ ψ))), (1)

obtained as follows : Let X be the set of the variables in x̄. Let us decompose
the set X into two disjoint subsets: Xr (the set of the elements of X which are
reachable in ∃x̄α) and Xu. Let Lead be the set of the leaders of the equations
of α. We have:

− x̄1 is the vector of the variables of Xr.
− x̄2 is the vector of the variables of Xu − Lead.
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− x̄3 is the vector of the variables of Xu ∩ Lead.
− α1 is of the form α1

1 ∧ α1
2 where α1

1 is the conjunction of all the equations in
∃x̄α whose leader is reachable, α1

2 is the conjunction of all the typing constraints
of α which concern variables of var(α1

1).
− α2 is of the form α2

1 ∧ α2
2 where α2

1 is the conjunction of all the inequations
of α and α2

2 is the conjunction of all the typing constraints of α which do not
concern variables of x̄3.
− α3 is of the form α3

1 ∧ α3
2 where α3

1 is the conjunction of the other equations
and α3

2 is the conjunction of all the typing constraints of α which concern the
variables of var(α3

1). The restriction on the order � of the quantified unreach-
able and reachable variables is due to an aim to get as leader of the equations
of the numeric section of α unreachable variables. If one quantified leader is
reachable then we deduce that all the quantified variables of this equation are
reachable. This condition will help us for the algorithm of resolution given at
Section 4. The intuitions behind this decomposition come from an aim to de-
compose a quantified solved block into three embedded sections each one having
particular properties that enable us either to remove quantifiers or make special
distributions in ψ and reduce the size of the formula ∃x̄α ∧ ψ.

Let A be the set of the solved blocks. Let A1 be the set of the formulas of the
form ∃x̄1α1, where α1 is a solved equation block and all the variables of x̄1 are
reachable in ∃x̄1α1. Let A2 be the set of the solved relation blocks.

Property 3.2.1. For all decomposed formula of the form (1) we have : ∃x̄1α1 ∈
A1, α2 ∈ A2, α3 ∈ A and T |= ∀x̄2 α2 → ∃!x̄3α3.

Example 3.2.2. Let v, w, x, y, z be variables such that w � y � z � x � v. Let
us decompose the formula

∃wxyz

⎡

⎣
v = fvx ∧ w + 2x + (−2)z = 1 ∧ y + 3z = 0∧
z < 1 ∧ 3z + 2x < 0∧
tree v ∧ num w ∧ num x ∧ num y ∧ num z

⎤

⎦ (2)

The reachable variables in the formula (2) are v and x. We have Xr = {x, v},
Xu = {w, y, z} and Lead = {v, w, y}. Since w � y � z � x then the formula (2)
is equivalent in T to the decomposed formula

⎡

⎣
∃x v = fvx ∧ tree v ∧ num x∧
(∃z z < 1 ∧ 3z + 2x < 0 ∧ num z ∧ numx ∧ tree v∧
(∃wy w+2x+(−2)z=1 ∧ y+3z=0 ∧ num w ∧ num x ∧ num y ∧ num z ))

⎤

⎦

Note that the elements of A1 does not accept elimination of quantifiers, this
is due to the fact that all the variables of x̄1 are reachable in ∃x̄1 α1. Indeed in
the formula ∃x v = fvx the quantification ∃x can not be eliminated in T .

In all what follows we will use the notations x̄1, x̄2, x̄3, α1, α2,α3 to refer to the
decomposition of the formula ∃x̄α.
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4 Solving First-Order Constraints in T

4.1 Working and General Solved Formulas

Definition 4.1.1. A normalized formula ϕ of depth d ≥ 1 is a formula of the
form

¬(∃x̄ α ∧
∧

i∈I ϕi), (3)

with I a finite (possibly empty) set, α a basic formula and the ϕi normalized
formulas of depth di and d = 1 + max{0, d1, ..., dn}.

Property 4.1.2. Every formula is equivalent in T to a normalized formula.

Definition 4.1.3. A working formula is a normalized formula in which all the
occurrences of ¬ are of the form ¬k with k ∈ {0, ..., 9} and such that each
occurrence of a sub-formula of the form

φ = ¬k(∃x̄ αc ∧ αp ∧
∧

i∈I ϕi), (4)

has αp = true if k = 0 and satisfies the first k conditions of the following
condition list if k > 0. Here αp is a solved block and is called propagated con-
straint section, αc is a basic formula and is called core constraint section, the ϕi

are working formulas, and in the conditions: βp ∧ βc is the conjunction of the
equations and relations of the immediate top-working formula ψ of φ if it exists.
i.e. ψ = ¬k(∃ȳβc ∧ βp ∧ φ ∧

∧
j∈J φj) where φ is the formula (4) and φj are any

working formulas.

1. if ψ exists then T |= αp ∧ αc → βp ∧ βc, and the tree-sections of αp and
βc ∧ βp have the same set of left-hand side of equations,

2. the tree-section of αp ∧ αc is formatted and the formula αp ∧ αc does not
contain tree x ∧ num x for any variable x,

3. αp ∧ αc is a block,
4. the numeric-section of αp ∧ αc is consistent, and we have u � v for u any

unreachable variable in x̄ and v any reachable variable in x̄,
5. αp ∧ αc is a solved block,
6. αp is the formula βc ∧βp if ψ exists, and is the formula true otherwise. The

formula αc is a solved block and for each relation num x (or tree x) in αp, if
x does not occur in an equation or inequation of αc then num x (resp. tree x)
does not occur in αc,

7. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃x̄2 αc2 ∧ (∃ε true))),
8. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε αc2 ∧ (∃ε true))),
9. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε true ∧ (∃ε true))).

We use k in order to be able to control the execution of our rewriting rules on
working formulas. We strongly insist on the fact that ¬k does not mean that the
normalized formula satisfies only the kth condition but all the conditions i with
1 ≤ i ≤ k. We call initial working formula a working formula of the form

¬6(∃ε true ∧
∧

i∈I

ϕi)
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with ϕi working formulas where all negation symbols ¬k have k = 0 and all
propagated constraint sections are reduced to true. We call final working formula
a formula of the form

¬7(∃ε true ∧
∧

i∈I

¬8 (∃x̄i αc
i ∧ αp

i ∧
∧

j∈Ji

¬9 (∃ȳij βc
ij ∧ βp

ij ))), (5)

where all the βc
ij are different from true.

Definition 4.1.4. A general solved formula is a formula of the form

∃x̄1 α1 ∧ α2 ∧
∧

i∈I

¬(∃ȳ1
i β1

i ), (6)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1
i β1

i ∈ A1, all the α1 ∧ α2 ∧ β1
i are solved blocks

and all the β1
i are different from true.

According to the properties of ¬8 and ¬9, in the final working formula (5),
αp

i = true and βp
ij = αp

i ∧ αc
i . Thus the formula (5) is equivalent in T to the

following disjunction of general solved formulas
∨

i∈I

(∃x̄i αc
i ∧

∧

j∈Ji

¬(∃ȳij βc
ij)) (7)

Property 4.1.5. Let ϕ be a general solved formula of the form (6). If ϕ has no
free variables then ϕ is the formula true, otherwise neither T |= ϕ nor T |= ¬ϕ
and the solutions of the free variables of ϕ are explicit.

This result is very important because it shows that for each solved formula ϕ
containing at least one free variable there exists a set of solutions and a set of
non-solutions, i.e. ϕ is neither true nor false in T . A similar result has been
shown for the finite trees of J. Lassez [17] and the rational trees of M. Maher
[20]. Note also that in all our proofs [8] we have not used the famous inde-
pendence of inequations [4,16,6,18] but only the condition that the signature of
T is infinite (F is infinite) which implies in this case the independence of the
inequations.

4.2 Main Idea

The general algorithm for solving first-order constraints in T uses a system of
rewriting rules. The main idea is to transform an initial working formula of
depth d into a final working formula of depth less than or equal to three. The
transformation is done in two steps:

(1) The first step is a top-down simplification and propagation. In each sub-
working formula, αc ∧ αp is transformed to a solved block, then ∃x̄αc is decom-
posed into three parts as in subsection 3.2. The third part is eliminated and
added to the core-constraint section of the immediate sub-working formulas us-
ing a special property of the quantifier ∃!. The constraints of the two other parts
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in αp are propagated to the propagated-constraint section of the immediate sub-
working formulas. In this step, the rules 1 to 24 are applied and transform the
initial working formula into a working formula where each negation symbol is of
the form ¬7.

(2) The second step is a bottom-up simplification and elimination of quan-
tifiers. This step is done by the rules 25 to 28. In each sub-working formula of
depth one or two, the rule 25 eliminates quantified variables of the second part
of the decomposition (the third one had been already removed in the first step).
The rule 26 eliminates the constraints of the second part in the deepest level.
Each sub-working formula of depth 3 is transformed step by step to a conjunction
of working formulas of depth 2 by the rule 28 using a property of the quantifier
∃?. The transformations in this step can create new sub-working formulas where
the first step needs to be done. At the end of the transformation, we obtain a
final working formula of depth less than or equal to 3.

4.3 Rewriting Rules

We present in Figure 1 the rewriting rules which transform an initial working
formula into an equivalent final working formula. To apply the rule p1 =⇒ p2 to
the working formula p means to replace in p, a sub-formula p1 by the formula
p2, by considering that the connector ∧ is associative and commutative.

In all these rules, α is a basic formula, ϕ and ψ are conjunctions of working
formulas.

In the rules 1 to 14, the equations and relations in αc and αp are mixed by
considering the connector ∧ associative and commutative. In these rules, except
the rule 6, all modifications in the right hand side are done in αc, since αp is a
solved block.

In the rule 2, f and g are two distinct function symbols taken from F . The
rules 4, 6, 7, are applied only if x � y. This condition prevents infinite loops and
makes the procedure terminating. In the rule 5, the equation x = fz1...zn does
not belong to αp. In the rule 6, if the equation x = fz1...zn belongs to αp, then
x = y ∧ tree y is moved to αp. In the rule 7, the equation x = z does not belong
to αp.

In the rule 9, a0 > 0. In the rules 13 and 14 the variable xk is the leader of
the equation Σiaixi = a01 and bk = 0. Moreover, the equation Σjbjxj = b01
does not belong to αp. In the rule 14, the relation Σjbjxj < b01 does not belong
to αp and λ = 1 if ak > 0 and λ = −1 otherwise.

In the rule 15, the tree section of αc ∧ αp is formatted and there is no sub-
formula in αc ∧αp of the form num x ∧ tree x . In the rule 16 respectively 17, the
typing constraint num z , respectively tree z is not in αc∧αp and is a consequence
of αc ∧ αp. In the rule 18, z does not have typing constraints in αc ∧ αp and
neither num z nor tree z is a consequence of αc ∧ αp.

In the rule 19, αc ∧αp is a block. In the rule 20, the numeric section of αc ∧αp

is inconsistent. In the rule 21, the unreachable variables in x̄ are renamed if
necessary such that u � v for each unreachable variable u and each reachable
variable v in x̄ and the numeric section of αc ∧αp is consistent. The consistency



Solving First-Order Constraints in the Theory of the Evaluated Trees 119

1 ¬1(∃ūnum x ∧ tree x ∧ α ∧ ϕ) =⇒ true
2 ¬1(∃ū x = fȳ ∧ x = gz̄ ∧ tree x ∧ α ∧ ϕ) =⇒ true
3 ¬1(∃ū x = x ∧ α ∧ ϕ) =⇒ ¬1(∃ū α ∧ ϕ)
4 ¬1(∃ū y = x ∧ tree x ∧ α ∧ ϕ) =⇒ ¬1(∃ū x = y ∧ tree x ∧ α ∧ ϕ)

5 ¬1

[
∃ū x = fy1...yn ∧ x = fz1...zn∧
tree x ∧ α ∧ ϕ

]

=⇒ ¬1

[
∃ū x = fy1...yn ∧

∧
i
yi = zi∧

tree x ∧ α ∧ ϕ

]

6 ¬1

[
∃ū x = y ∧ x = fz1...zn∧
tree x ∧ tree y ∧ α ∧ ϕ

]

=⇒ ¬1

[
∃ū x = y ∧ y = fz1...zn∧
tree x ∧ tree y ∧ α ∧ ϕ

]

7 ¬1(∃ū x = y ∧ x = z ∧ tree x ∧ α ∧ ϕ) =⇒ ¬1(∃ū x = y ∧ y = z ∧ tree x ∧ α ∧ ϕ)

8 ¬4(∃ū 0 = 0 ∧ α ∧ ϕ) =⇒ ¬4(∃ū α ∧ ϕ)
9 ¬4(∃ū 0 < a01 ∧ α ∧ ϕ) =⇒ ¬4(∃ū α ∧ ϕ)

10 ¬4

[
∃ū x = y∧
num x ∧ num y ∧ α ∧ ϕ

]

=⇒ ¬4

[
∃ū x + (−1y) = 0∧
num x ∧ num y ∧ α ∧ ϕ

]

11 ¬4

[
∃ū x = −y∧
num x ∧ num y ∧ α ∧ ϕ

]

=⇒ ¬4

[
∃ū x + y = 0∧
num x ∧ num y ∧ α ∧ ϕ

]

12 ¬4

[
∃ū x = y + z ∧ num x∧
num y ∧ num z ∧ α ∧ ϕ

]

=⇒ ¬4

[
∃ū x + (−1y) + (−1z) = 0∧
num x ∧ num y ∧ num z ∧ α ∧ ϕ

]

13 ¬4

[∃ū Σn
i=1aixi = a01∧

Σn
i=1bixi = b01∧

α ∧ ϕ

]

=⇒ ¬4

[∃ū Σn
i=1aixi = a01∧

Σn
i=1(bkai − akbi)xi = (bka0 − akb0)1∧

α ∧ ϕ

]

14 ¬4

[∃ū Σn
i=1aixi = a01∧

Σn
i=1bixi < b01∧

α ∧ ϕ

]

=⇒ ¬4

[∃ū Σn
i=1aixi = a01∧

Σn
i=1λ(bkai − akbi)xi < (bka0 − akb0)1∧

α ∧ ϕ

]

15 ¬1(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬2(∃x̄ αc ∧ αp ∧ ϕ)
16 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬1(∃x̄num z ∧ αc ∧ αp ∧ ϕ)
17 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬1(∃x̄ tree z ∧ αc ∧ αp ∧ ϕ)

18 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒
[

¬1(∃x̄num z ∧ αc ∧ αp ∧ ϕ)∧
¬1(∃x̄ tree z ∧ αc ∧ αp ∧ ϕ)

]

19 ¬2(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬3(∃x̄ αc ∧ αp ∧ ϕ)
20 ¬3(∃x̄ αc ∧ αp ∧ ϕ) =⇒ true
21 ¬3(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬4(∃x̄ αc ∧ αp ∧ ϕ)
22 ¬4(∃x̄ αc ∧ αp ∧ ϕ) =⇒ ¬5(∃x̄ αc ∧ αp ∧ ϕ)

23 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬5(∃ȳ βc ∧ βp ∧ ψ)

]

=⇒ ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬6(∃ȳ γc ∧ γp ∧ ψ)

]

24 ¬6

[
∃x̄ αc ∧ αp∧∧

i
¬0(∃ȳiβ

c
i ∧ βp

i ∧ ϕi)

]

=⇒ ¬7

[
∃x̄1x̄2 αc1 ∧ αc2 ∧ αp∧∧

i
¬1(∃ȳix̄

3γc
i ∧ γp

i ∧ ϕi)

]

25 ¬7

[
∃x̄ αc ∧ αp∧∧

i∈I
¬9(∃ȳiβ

c
i ∧ βp

i )

]

=⇒ ¬8

[
∃x̄1αc1 ∧ αc2∗ ∧ αp∧∧

i∈I′ ¬9(∃ȳiβ
c
i ∧ βp∗

i )

]

26 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬8(∃ȳβc ∧ βp)

]

=⇒
[

¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬9(∃ȳβc1 ∧ βp))∧∧
i∈I

¬1(∃x̄ȳβp ∧ βc1 ∧ βc2∗
i ∧ ϕ0)

]

27 ¬7

[
∃x̄ αc ∧ αp ∧ ϕ∧
¬9(∃εtrue ∧ βp)

]

=⇒ true

28 ¬7

⎡

⎢
⎢
⎣

∃x̄ αc ∧ αp ∧ ϕ∧

¬8

⎡

⎣
∃ȳ βc ∧ βp∧∧

i∈I

¬9(∃z̄i γc
i ∧ γp

i )

⎤

⎦

⎤

⎥
⎥
⎦ =⇒

⎡

⎣
¬7(∃x̄ αc ∧ αp ∧ ϕ ∧ ¬8(∃ȳ βc ∧ βp))∧∧

i∈I

¬6(∃x̄ȳz̄i δc
i ∧ δp

i ∧ ϕ0)

⎤

⎦

Fig. 1. The rewriting rules
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can be verified for example by using the first step of the Simplex. In the rule 22,
αc ∧ αp is a solved block.

In the rule 23, γc is obtained from βc as follows: for every variable x ∈ var(βc),
we add all the relations num x or tree x which are in βp but not in βc, and for all
the variables y which do not occur in an equation or inequation of βc we remove
all relations num y or tree y which are both in βc and βp. The formula γp is the
formula αp ∧ αc.

In the rule 24, ∃x̄αc is decomposed into ∃x̄1αc1 ∧ (∃x̄2αc2 ∧ (∃x̄3αc3)), γc
i =

βc
i ∧ αc3 and γp

i = βp
i ∧ αc1 ∧ αc2 ∧ αp.

The four rules 25, 26, 27 and 28 cannot be applied on the occurrence of ¬7

of the first level of the general working formula. In the rule 25, all the βci are
different from true, I ′ is the set of i ∈ I such that βc

i does not contain occurrences
of any variables in x̄2. The formula αc2∗ is such that T |= (∃x̄2αc2) ↔ αc2∗ and
is computed using the Fourier quantifier elimination. The propagated-constraint
section βp∗

i = αc1 ∧ αc2∗ ∧ αp.
In the rule 26, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is

obtained from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-
constraint sections by true. Let β2 be the formula obtained from βc2 by removing
the multiple occurrences of typing constraints and for all the variables y which
do not occur in an inequation of βc2 we remove all relations num y or tree y
which are both in βc1 and βc2. If β2 is the formula true then I = ∅, otherwise
the βc2∗

i with i ∈ I are obtained from β2 as follows: Since β2 ∈ A2 then it is of
the form [

(
∧

�∈L num z�) ∧ (
∧

k∈K tree vk )∧
((

∧
j∈J

∑n
i=1 aijxi < a0j) ∧

∧n
m=1 num xm)

]

,

thus ¬β2 is of the form
⎡

⎣
(
∨

�∈L tree z�) ∨ (
∨

k∈K num vk ) ∨ (
∨n

m=1 tree xm)∨∨
j∈J ((

∑n
i=1 aijxi = a0j1 ∧

∧n
m=1 num xm)∨

(
∑n

i=1(−aij)xi < (−a0j)1 ∧
∧n

m=1 num xm))

⎤

⎦

Each element of this disjunction is a block and represents a formula βc2∗
i . Of

course we have T |= (¬β2) ↔
∨

i βc2∗
i .

In the rule 28, I = ∅, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0
is obtained from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-
constraint sections by true. Moreover δp

i = αp and δc
i = γc

i ∧ βc ∧ αc.

Property 4.3.1. Every repeated application of the precedent rewriting rules on
an inital working formula terminates and produces an equivalent final working
formula which does not contain new free variables.

Corollary 4.3.2. Every formula is equivalent in T either to true or to false
or to a disjunction of general solved formulas, having at least one free variable,
being equivalent neither to true nor to false in T and where the solutions of the
free variables are expressed in a clear and explicit way.
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In fact, solving a constraint ϕ in T proceeds as follows:

1. Transform ϕ into a normalized formula, then into an initial working formula
φ, which is equivalent to ϕ in T .

2. Transform φ into a final working formula ψ using the rewriting rules defined
in the subsection 4.3.

3. Extract from ψ the equivalent disjunction of general solved formulas. If this
disjunction contains the general solved formula true, then it is reduced to
true.

Example: Let ϕ be the following constraint having i, j as free variables:

∃x x = fij ∧ i > 0 ∧ tree x ∧ num i ∧ num j ∧ ¬(∃k j = 2k ∧ num k).

We can see that num j ∧¬(∃k j = 2k ∧num k) is always false in T since for every
variable j, there exists a unique variable k such that j = 2k (axiom 13n). Let us
transform ϕ into an initial working formula (the propagated-constraint sections
are underlined):

¬6¬0(∃x x = fij ∧ i > 0 ∧ tree x ∧ num j ∧ true ∧ ¬0 (∃k j = 2k ∧ num k ∧ true))

After having applied the rules 24, 15, 16, 15, 19, 21, 22, 23 in this order, we
obtain:

¬7¬6(∃x x = fij ∧ i > 0∧ tree x ∧num i ∧num j ∧ true ∧¬0 (∃k j = 2k ∧num k ∧ true))

The rule 24 being applied changes the formula to:

¬7¬7

⎡

⎢
⎣

i > 0 ∧ num i ∧ num j ∧ true∧

¬1

[
∃xk x = fij ∧ j = 2k ∧ num k ∧ tree x∧
i > 0 ∧ num i ∧ num j

]
⎤

⎥
⎦

After having applied on the sub-working formula ¬1(...) the rule 15, 19, 21, 12,
22, 23

¬7¬7

⎡

⎣
i > 0 ∧ num i ∧ num j ∧ true∧

¬6

[
∃xk x = fij ∧ j − 2k = 0 ∧ num k ∧ tree x∧
i > 0 ∧ num i ∧ num j

]
⎤

⎦

The rule 24 is applied then we obtain:

¬7¬7(i > 0 ∧ num i ∧ num j ∧ true ∧ ¬7 (true ∧ i > 0 ∧ num i ∧ num j ))

The rules 25, 26 are applied in this order, giving:

¬7¬7(i > 0 ∧ num i ∧ num j ∧ true ∧ ¬9 (true ∧ i > 0 ∧ num i ∧ num j ))

Finally, by application of the rule 27, we obtain the final working formula ¬7true,
which is equivalent to the empty disjunction of general solved formulas, i.e. false .
Thus, the initial constraint ϕ is false in T and does not depend on the values
of its free variables i and j. A such phenomena is impossible to detect using a
decision procedure instead of a first-order constraint solver.
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5 Conclusion

Quantified formulas over trees and rational numbers provide an expressive con-
straint language that is essential in applications such as program analysis and
model checking. We have presented in this paper a first-order constraint solver
in the theory of the evaluated trees. The algorithm is given in the form of 28
rewriting rules and its correctness implies the completeness of a theory built on
the model of Prolog III. Our aim in this work was not only to decide proposi-
tion i.e. to decide if a formula without free variables is true or false in T but to
express the solutions of any first-order constraint having free variables in a clear
and explicit way.

S. Vorobyov [25] has shown that the problem of deciding if a proposition is
true or not in the theory of trees is non-elementary, i.e. the complexity of all
algorithms which solve it cannot be bound by a tower of powers of 2′s (with a
top down evaluation) with a fixed height. Thus, our algorithm must not escape
this kind of complexity in the worst case. This is why we have used two strategies
in the algorithm: a top down propagation of constraints and a bottom-up elim-
ination of quantifiers and distribution. This technique can quickly detect (using
propagation and local solving) sub-formulas which are equivalent to false and
prevents us from solving a big working formula (i.e. a working formula of huge
depth) which contradicts its top-working formula. We have recently programmed
a similar algorithm only on the theory of finite or infinite trees and in spite of
the high complexity we can solve formulas on two partners games involving 160
nested quantifiers [10].

Currently, we are trying to find other classes of theories Ti such that we can
apply a similar technique to solve first-order constraints in the hybrid theories
Ti +Trees. We are also working on a possibly CHR (Constraint Handling Rules)
implementation of our solver.

Acknowledgements. We thank Alain Colmerauer for our many discussions
and his help in this work. We dedicate to him this paper.
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Extracting Microstructure in Binary Constraint
Networks

Chavalit Likitvivatanavong and Roland H.C. Yap

School of Computing, National University of Singapore, Singapore

Abstract. We present algorithms that perform the extraction of par-
tial assignments from binary Constraint Satisfaction Problems without
introducing new constraints. They are based on a new perspective on
domain values: we view a value not as a single, indivisible unit, but as a
combination of value fragments. Applications include removing nogoods
while maintaining constraint arity, learning nogoods in the constraint
network, enforcing on neighborhood inverse consistency and removal of
unsolvable sub-problems from the constraint network.

1 Introduction

Constraint Satisfaction Problems (CSP) is one of the most important modeling
tools in AI with far-reaching applications. There are many variations on the
standard CSP, such as weighted constraints, partial, or distributed CSP, but
they are all based on the same notion: assigning values to variables in order to
satisfy constraints among them.

Normally, values that can be assigned to a variable are treated as being inher-
ently different from each other. In [1] however, a new viewpoint on domain values
is proposed which takes into account the microstructure (a low-level graphical
representation of a CSP based on compatibility of values). Basically, a value is
composed of label and support structure and can be broken into several values as
long as they correspond to the original one. Solutions involving values with the
same label are indistinguishable from one another given the rest of the solutions
being the same.

This definition of a domain value has been shown effective in reducing in-
terchangeability within a variable domain by recombining value fragments to
eliminate identical parts [1]. This paper also uses the microstructure but dif-
fers in that we only break values apart and do not form new values from the
value fragments. Furthermore, it deals with a partition of the microstructure
that spans many connected variables, as opposed to a single variable in [1].

We illustrate the main idea and one of its applications in Figure 1(i). There are
three variables and eight values, and each line denotes a compatible pair of values.
Suppose we want to designate the tuple (b, d, g) as a nogood (a partial assignment
that cannot be extended to a full solution) the usual approach would be to add a
new 3-ary constraint involving the three variables. It is unsafe to directly delete
one of b, d, or g since solutions involving them may be inadvertently eliminated
in the process.

F. Azevedo et al. (Eds.): CSCLP 2006, LNAI 4651, pp. 124–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Marking (b, d, g) in (i) as a nogood by eliminating one of b, d, or g, could remove
some solutions, while doing so in (ii), an equivalent network, is completely safe

Figure 1(ii) depicts an equivalent CSP in which values are split into fragments
as shown. Values having the same label (e.g. the three values with label “b”) are
differentiated by their structures. Solutions of (i) are the same as those of (ii)
with respect to their support labels. The tuple (b, d, g) is isolated (by the process
we will later describe) and thus we can simply delete one of the values involved
to mark it as a nogood; the rest would be removed by simple arc consistency
processing. Should this network be part of a larger one, the links to the external
part would need to be modified so that they connect to the newly-created values
instead (e.g a single link to b in (i) corresponds to three links to the three b
in (ii)).

Our contribution includes a novel process of extracting partial assignments
without introducing new constraints, along with the following applications:

– Maintaining constraint arity. Because no new constraint is introduced, the
original constraint arity would remain unchanged. Algorithms that work only
for binary CSPs [2] for instance would be usable even after higher-order
nogoods are incorporated.

– Learning nogoods by pruning. Nogoods can be extracted and pruned from
the microstructure, as shown in Figure 1(ii), rather than recorded [3]. This
gives an alternative approach to deal with the problem of increasing memory
requirements for recording nogoods.

– Enforcing Neighborhood Inverse Consistency in one pass. Like many other
consistency algorithms, NIC [4] requires more than a single pass of propaga-
tion to fully achieve consistency. We show how to do it in a single pass.

– Extracting unsolvable sub-problems. The common approach taken is to de-
compose a CSP into several sub-problems [5]. Our method is more efficient
since only the target sub-problem is extracted while everything else remains
intact in the original CSP.

The paper is organized as follows. In Section 2 we cover the CSP preliminary
and recall the formalism on domain values. In Section 3 we provide two algo-
rithms, one for extracting simple nogoods and the other for extracting complex
ones. along with their proofs of correctness. In Section 4, the process is gener-
alized so that more complex microstructures can be separated. Applications are
described in Section 5. We conclude in Section 6.



126 C. Likitvivatanavong and R.H.C. Yap

2 Background

Definition 1 (Binary Constraint Network). A binary constraint network
P is a triplet (V , D, C) where V is a finite set of variables, D =

⋃
V ∈V DV where

DV is a finite set of possible values for V , and C is a finite set of constraints
such that each CXY ∈ C is a subset of DX × DY indicating the possible pairs
of values for X and Y , where X �= Y . Without loss of generality, we assume
that two values in different domains are distinct (i.e. if a ∈ DX then a /∈ DY

for all Y �= X). If a ∈ DX then we use var(a) to denote X. If CXY ∈ C, then
CY X = {(y, x) | (x, y) ∈ CXY } is also in C.

A binary constraint network is k-consistent if given k − 1 variables and k − 1
values that satisfy the constraints on these variables, we are able to find a value
(called a support) for any kth variable such that all the constraints on the k
variables will be satisfied by the k values taken together. When k = 2 and 3 it is
called Arc Consistency (AC) and Path Consistency (PC) respectively.

The neighborhood of variable V (NV ) is the set {W | CV W ∈ C}. We use
n, e, and d to denote the number of variables, the number of constraints, and
the maximum domain size. An assignment is a function π : W ⊆ V → D
such that π(W ) ∈ DW for all W ∈ W; we denote the function domain by
dom(π). π is consistent if and only if for all CXY ∈ C such that X, Y ∈ dom(π),
(π(X), π(Y )) ∈ CXY . π is a solution if and only if dom(π) = V and π is
consistent. We use P |W to denote the binary constraint network induced by W ⊆
V. A Constraint Satisfaction Problem involves finding one or more solutions to
an associated constraint network or declaring it unsatisfiable.

We extend the usual definition of a value to a 2-tuple in order to clearly dis-
tinguish between the syntax (value of the label) and the semantics (the support
corresponding to the label).

Definition 2 (Values). A value a ∈ DV is a 2-tuple (L,σ) where L is a set of
labels, while σ, called support structure, is a function σ : NV → 2D such that
σ(W ) ⊆ DW for any W ∈ NV . We use La to denote the set of labels of value
a and σa denotes the support structure of a. A value a must be valid, that is,
σa(W ) = {b ∈ DW | (a, b) ∈ CVW } for any W ∈ NV . The local solutions of a is
the set {(s1, . . . , s|NV |) ∈ DW1 ×DW2 × . . .×DW|NV | |si ∈ σa(Wi), Wi ∈ NV }, the
enumeration of a’s supports. The size of a ( size(a)) is

∏
W∈NV

|σa(W )|, which
equals the number of local solutions of a.

Let L =
⋃

a∈D La be the set of all labels. A label-assignment is a function λ :
W ⊆ V → L such that λ(W ) ∈

⋃
a∈DW

La for all W ∈ W. Given an assignment
π, we denote πlabel to be the set of label-assignments {λ | λ(V ) ∈ Lπ(V )}.

The new definition allows a domain to contain values having the same label
but different support structures; values having both the same label and the
support structure are not permitted. In some examples, we append a suffix to
labels. This is not actually necessary and is used only to better differentiate
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between values with the same label, e.g. c1, c2 and c3 in Figure 2(ii) all have
the same label c. For simplicity, we use a form of cross-product representation
to denote the support structure of a value. For example, value d in Figure 1(i) is
represented by ({d}, {b}×{f,g,h}). The new definition also allows multiple labels
so that we can combine neighborhood interchangeable values [6] without losing
any solution (unlike the standard practice where only one value is kept). For
example ({a}, {x}×{y}) and ({b}, {x}×{y}) can be replaced by a single value
({a,b}, {x}×{y}). Any solution involving ({a,b}, {x}×{y}) can be converted back
using label-assignment.

We define the following operations on values, analogous to the usual opera-
tions on sets. For these operations to be correct, we require constraint networks
to be AC. Given the same requirement for various algorithms — for instance
Maintaining Arc Consistency — and the efficiency of recent AC algorithms this
property is not taxing to presume.

Definition 3 (Operations on Values). Let a and b be two values in DV .
The intersection of a and b (a � b) is a value c where Lc = La ∪ Lb and

σc(W ) = σa(W ) ∩ σb(W ) for all W ∈ NV . Two values a and b are disjoint
(a � b = ∅) if there exists a variable X ∈ NV such that σa(X) ∩ σb(X) = ∅. A
set of values is disjoint if its members are pairwise disjoint.

The union of a and b (a ⊕ b) is a value c where Lc = La = Lb and σc(W ) =
σa(W ) ∪ σb(W ) for all W ∈ NV . Union is undefined1 (a ⊕ b = ∅) if La �= Lb

or there exist X, Y ∈ NV such that σa(X) �= σb(X) and σa(Y ) �= σb(Y ). A
subtraction of b from a (a � b) is a minimal set of disjoint values C such that⊕

(C ∪ {a � b}) = a. Value a is subsumed by b (a � b) if σa(W ) ⊆ σb(W ) for
all W ∈ NV .

For example, ({x,y}, {a,b}×{c}) � ({y,z}, {a}×{c,d}) = ({x,y,z}, {a}×{c}), ({x},
{a}×{b}×{c}) ⊕ ({x}, {a}×{b}×{d}) = ({x}, {a}×{b}×{c,d}). For subtraction,
we stress that the result is a set of values. Consider ({a}, {d,e}×{f,g}) � ({b},
{d}×{f }): two possible results2 are {({a}, {e}×{f,g}), ({a}, {d}×{g})} and {({a},
{e}×{f }), ({a}, {d}×{e,g})}. These operations preserve the local solutions of
values involved.

3 Extracting Assignments

The following definitions are used to deal with the extraction process.

Definition 4 (Unit). A value a ∈ DX is called a unit value if and only if
a has exactly one support in the domain of each variable in NX . A consistent
1 In other words, supports are only allowed to differ on one variable in the neighbor-

hood. Union imposes this restriction so that a new value can be formed without
introducing spurious solutions. Union was used in [1] but not in the algorithms here.

2 Algorithms in this paper do not require the result of a subtraction to be unique,
although it would lead to different networks. We can enforce uniqueness by imposing
some ordering on the support structure.
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assignment π = (t1, . . . , tm) is called a unit assignment if and only if each ti is
a unit value in P|dom(π).

Given a consistent assignment π, we want to make it a unit assignment. This is
so that it can be easily extracted. There are many ways to transform the domains
involved so that π becomes unit. The simplest method is to solve P|dom(π) for all
solutions and modify domains and constraints so that a solution is represented
by a single strand in the microstructure. The target unit assignment would be
one of the solutions. This process is not practical as all solutions are needed
and the sub-problems involved are completely replaced. We propose a dynamic
method that gradually changes the network by subtracting from ti in π the unit
value of ti with respect to π (defined below) until the whole assignment becomes
unit.

Definition 5 (Unit Value with Respect to Assignment). Given a consis-
tent assignment π = (t1, . . . , tm) and a value a = ti for some 1 ≤ i ≤ m, the
unit value of a with respect to π (denoted by unit(a, π)) is a value u such that
Lu = La and for any X in the neighborhood of var(a)

σu(X) =
{

{tj} if X = var(tj), i �= j and 1 ≤ j ≤ m
σa(X) otherwise

We explain the process using Figure 2(i)–(viii). Figure (i) depicts the initial
microstructure. Suppose we want to mark the assignment π = (b, c, e, f, h) as a
nogood. This can be done by separating it from the rest of the network. The
result is shown in (viii); both (i) and (viii) are equivalent in term of solution
set.

The entire process could be thought of as “untangling a thread” by splitting
it off one segment at a time. In (ii) for instance, the value ({c}, {a,b}×{d,e}) in
(i) is split into three values with the same label: ({c}, {b}×{e}), ({c}, {b}×{d}),
and ({c}, {a}×{d,e}), where ({c}, {b}×{e}) is unit(c, π) for both (i) and (ii).
These three values are represented as c1, c2, and c3 in the figures (note that the
subscript is not necessary). In this example, DY is chosen first and the complete
order is (Y, W, Z, Y, W, U, X). Note that a domain value could be transformed
more than once, and a different ordering results in a different network, although
the target unit assignment is always identical.

3.1 Basic Algorithm

Algorithm 1 gives a restricted version of extraction, which requires that π is non-
cyclic (defined below). We call this algorithm extractLine(). As we will see later,
algorithm 1 also serves as a basic template for more general forms of extraction.

Definition 6 (Cyclic Assignment). A consistent assignment π for a binary
constraint network P is cyclic if and only if the constraint network for P |dom(π)
contains a cycle.
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Fig. 2. Extracting a non-cyclic assignment. Figures (i)–(viii) illustrate the process of
extracting (b, c, e, f, h) using the order (Y, W,Z, Y, W,U, X). Due to space limitations
we do not provide details of the subtraction operation in this paper. In short, given
a � b a subtraction algorithm will try to shed part of a by going through each variable
in the neighborhood until b emerges. For instance, consider ({c}, {a,b}×{d,e}) � ({c},
{b}×{e}) (from (i) to (ii)). Since c ∈ DY , we need to consider NY = {X, Z}. Suppose
X is chosen first; the algorithm would divide ({c}, {a,b}×{d,e}) into ({c}, {b}×{d,e})
and ({c}, {a}×{d,e}). ({c}, {b}×{d,e}) is further divided into ({c}, {b}×{d}) and
({c}, {b}×{e}). Therefore,({c}, {a,b}×{d,e}) � ({c}, {b}×{e}) = {({c}, {a}×{d,e}),
({c}, {b}×{d}), ({c}, {b}×{e})} using the order (X, Z) (this ordering has nothing to
do with the ordering from line 1 of Algorithm 1). Note that ({c}, {a}×{d,e}) ⊕ (({c},
{b}×{d}) ⊕ ({c}, {b}×{e})) = ({c}, {a,b}×{d,e}).
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Fig. 3. Figure (i) – (iv) illustrate non-terminating transformation. Figure (i) depicts
the partial microstructure induced by (b, c, e). In Figure (ii) – (iv), the processing order
is (Y, Z, X). Extraction continues indefinitely for the order (Y,Z, X, Y, Z, X, . . .).

Algorithm 1. extractLine(π)
input: A consistent assignment π = (t1, . . . , tm)
while tk �= unit(tk, π) for some 1 ≤ k ≤ m do1

R ←− tk� unit(tk, π) /* R is a set */;2

Replace tk in its respective domain with unit(tk, π) and value(s) in R;3

Update constraints involved with variable var(tk);4

From the example in Figure 2(i)–(viii) it is not clear whether the algorithm
terminates in general, since a variable domain could be repeatedly transformed.
For instance, value e in (i) is unit but loses the property after its neighboring
value c is split. We will prove that extractLine() is correct and terminates.

Definition 7 (Neighborhood Arc Consistency). A value is neighborhood
arc consistent (NAC) if and only if its supports are arc-consistent with one
another.

Lemma 1. Given a constraint network and a value a, an upper-bound on the
number of NAC values having the same label as a in an equivalent constraint
network is dn.

Proof: The maximum number of solutions for the network is dn. The network
can be rearranged so that each solution is a unit assignment. Each value a in the
original network participates in no more than dn of them. Since a unit value of
a unit assignment is NAC, an equivalent network can contain at most dn NAC
unit values having the same label as a. �

Theorem 1. extractLine() is correct and terminates on non-cycle input.

Proof: The algorithm changes the constraint network incrementally by splitting
each tk one by one. Since operations on values, including subtraction (�), pre-
serve the local solutions with respect to their labels, the resulting network admits
the same solutions as the original.

After the subtraction in line 2, unit(tk, π) takes place of tk in the repeat loop,
making tk a unit value in the future passes. When the condition in line 1 becomes
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false, each component of π must be a unit value and thus π is a unit assignment
according to Definition 4.

To show that the algorithm terminates, we note that there are at most
d|dom(π)| NAC values having the same label as tk according to Lemma 1. Since
tk �= unit(tk, π) (in fact tk subsumes unit(tk, π)), each subtraction produces at
least one new value r in R with the same label as tk. The acyclic restriction on
π implies there is no constraint among variables in the neighborhood of var(tk),
thus r is automatically NAC. Therefore, each subtraction produces at least one
NAC value. As the upper-bound on the number of NAC values having the same
label as tk and the number of components of π (which is m) are finite, the algo-
rithm cannot keep on producing new NAC values and it must terminate within
a finite number of steps. �

Space complexity of extractLine() is O(dg) where g is the maximum degree of
all variables in the network. This is due to the fact that the algorithm works on
two values at a time (a value chosen and its unit value) and modifies only part
of connecting constraint.

The algorithm may not terminate on input containing a cycle. An example of
a non-terminating transformation is shown in Figure 3(i)—(iv).

3.2 Extracting Cyclic Assignments

In a non-terminating transformation that involves a cyclic assignment, values
that are repeatedly split off are not part of any solution. This stems from the
fact that the definition of unit value does not take into account the constraints
among the neighborhood. Since extractLine() operates on one segment at a time,
intuitively speaking there is a chance that the segments split off will not be joined
properly when the target assignment forms a cycle.

A solution to this problem is to enforce PC [7] on new values created after each
subtraction. PC ensures that the segments that are split off form a connected
path along the cycle. To make the algorithm terminate on cyclic input, we add
the following line in the algorithm after line 4 inside the while loop: Enforce
PC on P |dom(π) only on arcs involving values in R. Figure 4 demonstrates the
extraction of a cycle. We call this algorithm extractCycle().

It is worth noting that having a constraint network that is already path con-
sistent beforehand does not eliminate the need for path consistency processing
in extractCycle(). As an example, consider ({d}, {a, b2}×{e,f }) in Figures 4(ii),
where both (i) and (ii) are path consistent. After subtraction, d is split into three
values, whose edges (b2, d2), (d2, e), and (d1, f) are path inconsistent. The reason
is due to the multiplicative effect of the number of local solutions involving d
(size(d)), while PC among its neighborhood only has the additive effect on some
of those local solutions.

In order to prove that extractCycle() terminates, we need to define the fol-
lowing notion of neighborhood path consistency.

Definition 8 (Path Consistent with Respect to Cycle). Given a cycle
involving an arc (X, Y ), a tuple (a, b) ∈ CXY is path consistent with respect to
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Fig. 4. Extracting (b, d, f). Figure (i) is the initial microstructure which contains three
entangled solutions. In (ii) DX is transformed; enforcing PC has no effect on the result.
Figure (iii) depicts the network after DY is transformed; PC is later enforced, resulting
in (iv). Next, DZ is transformed as shown in (v). The final result after PC processing
is shown in (vi). Notice that the three solutions are now disconnected.

b

a

d f

c

h

e g

i j

(i)

b

a

d f

c

h

e g

b d f h ji

(ii)

a

b

d f

h

e

g

c

(iii)

a

b

d f

h

e

g

c
a g

(iv)

Fig. 5. More complex extraction. (i) and (iii) are the original networks while (ii) and
(iv) are the results after extracting (b, d, f, h) and (a, b, g, h) respectively. Note that if
(a, d, f, g) were to be extracted in (iii) instead the result in (iv) would contain three
disconnected solutions.
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the cycle if and only if (a, b) can be extended to the whole cycle by finding values
that satisfy all the constraints in the cycle.

Definition 9 (Neighborhood Path Consistency). A value a ∈ DX is
neighborhood path consistent (NPC) with respect to a cycle C if and only if
(a, b) is path consistent with respect to C for all b ∈ NX .

The proof of the following lemma is similar to that of of Lemma 1.

Lemma 2. Given a value a ∈ DX and a cycle C involving X, an upper-bound
on the number of NPC values with respect to C having the same label as a in an
equivalent constraint network is dn.

In the rest of the paper when we say a value a ∈ DX is NPC that means it is NPC
with respect to the all the cycles involving X in the input π. Non-terminating
transformation involves generating non-NPC values, which can be removed by
PC processing. Note that NPC implies NAC but not vice versa. We will use
NPC instead of NAC in the termination proof for extractCycle().

Theorem 2. extractCycle() is correct and terminates.

Proof: The proof is similar to that of extractLine() except for the algorithm
termination. We will show that each subtraction will bring a certain measure
closer to a finite bound. However, with no restriction on π, not all values in R of
the algorithm are NPC and there is no guarantee that a subtraction will produce
at least an NPC value. We will instead use the bound on the number of NPC
values together with a bound on a new measure involving π.

We define the following measure size(π) :=
∑

1≤i≤m

∑
W∈Nvar(ti)

|σti(W )|.
Observe that after the algorithm is finished, size(π) must be less than that of
the original input assignment by a finite amount. We denote ΔL to be the value of
that amount and we will use this bound along with the upper-bound in Lemma 2
(denoted by U) to prove algorithm termination. Specifically, we will show that:
(1) a subtraction either produces an NPC value having the same label as tk or
decreases size(π) by at least one. (2) a subtraction does not increase size(π). (3)
a subtraction that decreases size(π) by one will decrease the number of NPC
values by at most dn. (In contrast, the number of NAC values in the proof of
extractLine() does not decrease.) As a result, size(π) decreases no more than ΔL
times and the number of NPC values increases no more than U + dnΔL times.
The algorithm terminates since these bounds are finite and either the decrease
or the increase must happen after each subtraction.

We prove the three conditions as follows:

(1) Assume a subtraction does not produce an NPC value having the same
label as tk. Since tk subsumes unit(tk, π), we will focus on the arc (tk, s) where
s �= ti for any i and s ∈ σtk

(W ) for some W . (tk, s) will be removed during
the PC processing that follows the subtraction; otherwise it will form part of
an NPC sub-value, contradicting the assumption. Thus the value of size(π) will
be decreased by the number of such arcs. (E.g (d, e) and (d, a) in Figure 4(ii)



134 C. Likitvivatanavong and R.H.C. Yap

are deleted in (iv), thereby reducing the measure by 2. We emphasize that these
arcs are not path inconsistent by themselves — indeed, both arcs are PC in (ii).
They are removed due to the combination of subtraction and PC processing.)

(2) Since subtraction preserves local solutions of tk, if an arc is removed it
would be replaced by an equivalent arc that leads to the same local solutions
(e.g. (c, d) is in Figure 2(i), (c3, d) is not in (ii), but the extra arc (b, c2) in (ii)
would keep b connected to d via c2). An increase in the number of arcs connected
to tk and its neighborhood means an increase in the number of local solutions,
which is not possible (e.g the number of arcs involving c, b, e in (i) are 4, the
same number as those involving c3, b, e in (ii) although they are different).

(3) If an arc is deleted, a number of values could lose the NPC property. We
simply use the bound dn.

Remark: we cannot rely on the reduction of size(π) (or similar measures based
on the number of links involving π) alone to prove the algorithm termination
since it does not always decrease after subtraction. For instance, size((b, c3,
e, f, h)) in Figure 2(ii) is 12, the same as size((b, c3, e, f3, h)) in (iii). �

Space complexity of extractCycle() is the same as that of extractLine() for the
same reason. Time complexity is exponential in the worst case as a result of the
upper bound used in the proof. The bounds in both proofs are admittedly very
loose but they are in no way an indication of the actual number of passes. Our
concern is to show that the algorithms terminate. Nevertheless, we expect the
algorithm to be used in some specific context as an auxiliary routine to other
algorithms, to be used occasionally, so that even if the time complexity is higher,
that would not render it impractical. An algorithm which is more expensive can
still be applied as a preprocessing step for some applications. We will discuss
further applications in Section 5.

Another example of the process is given in Figure 6. Since the input is as-
sumed to be consistent, we only need to enforce PC on new arcs. That is, after
subtracting unit(b, π) we need to find a support for (a, b1), (b1, c), (b1, f), (e, b2),
(b2, c), and {(i, j) | i ∈ {b1, b2}, j ∈ {g, d}}. Moreover, since PC is enforced just
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Fig. 6. Extracting (b, e, g, f). (ii) shows the result after the first subtraction. (iii) shows
the result of enforcing PC — since no arc from b2 to any value in DW is PC, b2 is
removed ((b2, g) has no support in Z and (b2, d) has no support in X.) (iv) depicts the
network after the next subtraction. After enforcing PC, f2 is removed.
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to eliminate non-NPC values, we do not need to record a new constraint. In this
example we do not need to add CY W .

Although we have shown in the proof that PC is enough for extracting cycle
of any length, one might think that extracting an assignment involving k-clique
would require k-consistency. This is not true since PC is used only to eliminate
values that will not form proper cycles, not to solve any sub-problem. Because
a k-clique can be decomposed into smaller cycles, the subtraction operation
together with PC suffice in extracting any type of assignment, as long as it is
consistent. Examples of more complex extraction are given in Figure 5, which
includes a 4-clique and two overlapping cycles.

4 Extracting Microstructure

We can generalize the subtraction process for inputs which are microstructures
rather than assignments. We formally define a microstructure as follows.

Definition 10 (Microstructure). A microstructure of a binary constraint
network P is a graph M = (V, E) in which V ⊆ D, and if an edge (a, b) is
in E then values a and b are compatible in P. We use dom(M) to indicate⋃

a∈V var(a). A microstructure M = (V, E) is arc consistent if and only if given
a ∈ V , X = var(a), and CXY ∈ C, there exists (a, b) ∈ E for some b ∈ DY .

Since we define the set of vertices as a subset of domain values, the support struc-
ture of a value in a microstructure follows that of the whole network. However,
we need to define a value whose support structure conforms with only edges in
the microstructure.

Definition 11 (Unit Value with Respect to Microstructure). Given an
arc consistent microstructure M = (V, E) and a value a ∈ V , the unit value of
a with respect to M (denoted by unit(a, M)) is a value u such that Lu = La,
and for any X in the neighborhood of var(a)

σu(X) =
{

{b ∈ V |X = var(b) and (a, b) ∈ E} if X ∈ dom(M)
σa(X) otherwise

The algorithm for extracting microstructure (extractStructure()) is similar to
extractCycle() except the input is an arc consistent microstructure M and we
use the unit value according to Definition 11 rather than Definition 5. No-
tice that if a microstructure M contains a single value per domain, then it
is also an assignment. An arc consistent microstructure M according to Defini-
tion 10 is equivalent to the consistent assignment M according to Definition 1.
This means an input M for extractStructure() need not contain a solution for
dom(M).

The correctness and termination proof is similar to that of extractCycle().
extractStructure() is strictly more powerful than extractCycle() since its input
may involve more than one value from the same domain. An example of mi-
crostructure extraction is given in Figure 7.



136 C. Likitvivatanavong and R.H.C. Yap

c

a

b e

d

f

(i)

c

b e

f

a2 d2a1 d1

(ii)

c f

a2 d2a1 d1

b1
b2

e1
e2

(iii)

a2 d2a1 d1

c1 c3 f1 f3f2c2

b1 b2 e1 e2

(iv)

a2 d2a1 d1

c3 f1

b2

f3

b1 e1

e2

c1

(v)

Fig. 7. Extracting cycle (a, b, c, d, e, f). (i) is the original network; (v) is the result.
Notice that the cycle (a, b, c, d, e, f) is arc consistent but contains no solution (arcs
(a, c) and (d, f) are not part of the cycle). From (iv) to (v) we only enforce PC on
values in R of the algorithm so that arcs involving c3 and f1 are not checked for PC.

5 Applications

Maintaining constraint arity. A common approach taken to characterize a tuple
as a nogood is to update the constraint involved so that the tuple would not
be tried in the future. When constraints are table-based, this can be done by
simple record-keeping. If the constraint does not exist it must be created. When
the tuple is of size k, the resulting network will have at least one constraint of
arity k. This change in topology is problematic for algorithms that presume the
maximum arity of constraints to be bounded. Algorithms that work only for
binary CSP [2] would be rendered useless when the constraint arity increases,
even though the network starts out as binary. This is especially significant for
distributed CSPs in which agents perform two-way communication. We resolve
this problem by first extracting the target tuple and removing it by deleting one
of the values involved from its domain. The extraction is done along the existing
constraints and no new, higher-arity constraint is required.

Adaptive consistency [8] is one example of algorithms that produce non-binary
nogoods. By using the extraction process, an initially binary constraint network
will remain binary after applying adaptive consistency. Indeed, the arcs in the or-
dered constraint graph would be identical to the constraint network itself. Adap-
tive consistency has been used in the context of real-time constraint satisfaction
[9], whose authors chose to delete domain values involved in nogoods. However,
some solutions may be lost. In contrast, the removal of nogoods by extraction
would allow complete solution retention without the need for extra storage space
for new constraints.

As our algorithms work only for binary CSP at the moment, a possible re-
search direction is to extend the process to directly cover non-binary constraints
(though conversion to binary CSP is possible with good performance [10]). This
will allow the original arity of the network to be maintained regardless of its ini-
tial value; algorithms that work only on k-ary constraints but produce nogoods
involving g-ary constraint as a side-effect where g > k would continue to work.

Learning nogoods by pruning. While the common approach used in nogood learn-
ing is to record each nogood as it arises [3], we can extract and discard a nogood
instead. Nogoods of higher order can then be avoided without requiring a large
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amount of space. Although in the worst case, the resulting microstructure can
be quite large, this is offset by the fact that we “learn” a nogood by pruning
part of the microstructure away — in effect embedding the knowledge in the
network itself — rather than by explicit memorization; the dynamic would bal-
ance the overall size as search progresses. This kind of learning is independent of
variable ordering and is especially useful for non-systematic search whose com-
pleteness relies on nogood store, which becomes very large over time, such as
weak-commitment search [11].

Enforcing NIC in one pass. NIC is a powerful technique and has shown to be
stronger than many other types of consistency [12]. NIC requires that a value
participates in a solution of its neighborhood; otherwise, the value is removed
and the effect is propagated. Solving a sub-problem for a solution is a relatively
expensive task however. The propagation would further increase the total cost,
as every single neighborhood-inverse-inconsistent value must be removed to fully
achieve NIC. In practice, NIC is rarely used and/or limited to a single pass.

We suggest a way to fully enforce NIC in one pass as follows. When a solu-
tion in the neighborhood is found, we extract it out together with the value it
supports. This ensures each NIC value has only a single solution as its support
after the first pass. Afterward, no sub-problem needs to be solved and further
neighborhood-inverse-inconsistent values are deleted by AC propagation alone.

It remains to be seen whether it is possible to apply the idea to other higher-
order consistency techniques that require multiple passes, such as Singleton Arc
Consistency [13,14].

Extracting unsolvable sub-problems. In contrast to the previous use for NIC, we
can extract sub-problems that are known to be unsolvable and discard them to
reduce the search space. This method (using extractStructure()) is strictly more
powerful than nogood recording since each unsolvable sub-problem may involve
more than one value from the same domain. In [5], a constraint network is decom-
posed into disconnected sub-problems by recursively splitting variable domains.
The result is a collection of independent constraint networks with redundant
variables. Microstructure extraction is more efficient since only the target sub-
problem is isolated while the rest of the network remains intact; everything is
contained in just one CSP.

We can use this technique to partially enforce k-consistency by preprocessing
a CSP so that any pattern in the microstructure matching known k-inconsistent
sub-problems in the portfolio — for instance a pigeonhole problem — is extracted
and eliminated, without the usual time complexity associated with k-consistency.

6 Conclusion

We have introduced a novel process based on value-splitting that is able to
extract the target tuple/microstructure while preserving all the solutions. A
number of applications are suggested. As the process involves only the most ba-
sic CSP model and is not restricted to any specialized problem or constraint,
we believe that once this process is recognized more wide-ranging applications
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will appear. Since the extraction process increases the size of domains and con-
straints, it is suitable for dynamic algorithms that are able to prune parts of the
microstructure away as they run, so that the increase and the decrease in size
would cancel each other out.

The focus in this paper has been to show how a different view of domain values
gives new approaches to existing problems. Future work is to investigate some
of the implementation issues, such as ordering heuristics (i.e. how best to pick
a value in line 1 of Algorithm 1), how to efficiently implement the subtraction
operator, and also experimental studies.
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Abstract. Constraint Handling Rules (CHR) is a concurrent, commit-
ted-choice, rule-based language. One of the first CHR programs is the
classic constraint solver for syntactic equality of rational trees that per-
forms unification. We first prove its exponential complexity in time and
space for non-flat equations and deduce from this proof a quadratic com-
plexity for flat equations. We then present an extended CHR solver for
solving existentially quantified conjunctions of non-flat equations in the
theory of finite or infinite trees. We reach a quadratic complexity by
first flattening the equations and introducing new existentially quantified
variables, then using the classic solver, and finally eliminating particular
equations and quantified variables.

1 Introduction

Constraint Handling Rules (CHR) [3,5,14] is a concurrent committed-choice
constraint logic programming language consisting of guarded rules that trans-
form multi-sets of constraints (atomic formulas) into simpler ones until they
are solved. One of the first CHR programs is the classic constraint solver for
syntactic equality of rational trees (RT) that performs unification [3,5].

Unification is concerned with making first order logic terms syntactically equiv-
alent by substituting terms for variables. For example, the terms h(a, f(Y )) and
h(Y, f(a)) can be made syntactically equivalent by substituting the constant a
for the variable Y . In 1930, Herbrand [6] gave an informal description of a unifi-
cation algorithm. Robinson [12] rediscovered a similar algorithm when he intro-
duced the resolution procedure for first-order logic in 1965. Since the late 1970s,
there are quasi-linear time algorithms for unification. For finite trees (Herbrand
terms), see [9] and [11]. For rational trees, see [7]. These algorithms can be con-
sidered as extensions of the union-find algorithm [15] from constants to trees.

Contributions. In this paper we present two new contributions:

(1) The classic RT solver relies on a term order and its complexity (in time
and space) was an open problem for a decade. We first prove its exponential
time and space complexity for non-flat equations using any term order1 and
� Funded by the DFG research project GLOB-CON.
1 We pay the elegance of the solver, which consists of just four rules and so is more

concise than most formal specifications of unification, by an exponential complexity.
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then show its quadratic time and space complexity for flat equations, i.e. each
equation contains at most one function symbol.

(2) We show that existentially quantified conjunctions of non-flat equations2

can be solved in Maher’s theory T of finite or infinite trees [8] with a quadratic
complexity using an extension of this classic RT solver as well as a notion of
reachable variables and equations. To the best of our knowledge, this is the first
CHR solver for existentially quantified conjunctions of non-flat equations in T
with quadratic complexity.

Organisation of the Paper. We recall the basics of Constraint Handling Rules
(CHR) and present Maher’s theory T of finite or infinite trees [8] in Section 2.

In Section 3 we first introduce the CHR rules of the classic RT solver which is
parametrised by an order of terms and prove its termination for any term order.
We then show exponential worst-case time and space complexity of RT for any
term order in the case of non-flat equations. We end this section showing its
quadratic complexity for flat equations.

Finally, in Section 4, we extend the classic RT solver, so that it can solve
in T existentially quantified conjunctions of non-flat equations in quadratic com-
plexity. For that, we first show that any existentially quantified conjunction of
non-flat equations can be transformed into an equivalent existentially quanti-
fied conjunction of flat equations in linear time and space complexity. Then, we
define the notion of reachable variables and equations and use it to remove par-
ticular quantified variables and equations. Our extension of the classic RT solver
consists of only a few CHR rules.

2 Preliminaries

Readers familiar with CHR and the theory of finite or infinite trees can skip this
section.

2.1 Constraint Handling Rules

Constraint Handling Rules (CHR) [3,5,14] is a concurrent, committed-choice,
rule-based logic programming language. We distinguish between two different
kinds of constraints: built-in (pre-defined) constraints which are solved by a given
constraint solver and CHR (user-defined) constraints which are defined by the
rules in a CHR program. This distinction allows one to embed and utilise existing
constraint solvers as well as side-effect-free host language statements. Built-in
constraint solvers are considered as black-boxes whose behaviour is trusted and
that do not need to be modified or inspected.

There are two main kinds of rules:

Simplification rule Name @ H ⇔ G | B
Propagation rule Name @ H ⇒ G | B

2 For example, the equation ∃X h(X, f(Y )) eq h(Y, f(X)) is an existentially quanti-
fied non-flat equation with the free variable Y .
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Name is an optional, unique identifier of a rule, the head H is a non-empty con-
junction of CHR constraints, the guard G is a conjunction of built-in constraints,
and the body B is a goal. A goal (query, problem) is a conjunction of built-in
and CHR constraints. A trivial guard expression “true |” can be omitted from a
rule. Since we do not use propagation rules in this paper, it suffices to say that
they are equivalent (in the standard semantics) to a simplification rule of the
form Name @ H ⇔ G | (H ∧ B).

The standard operational semantics of CHR is given by a transition system
where states are conjunctions of constraints. To the constraints in the store,
rules are applied until a fix-point is reached. Note that conjunctions in CHR are
considered as multi-sets of atomic constraints. Any rule that is applicable can be
applied and rule application cannot be undone since CHR is a committed-choice
language. A simplification rule H ⇔ G | B is applicable in state (H ′ ∧ C), if the
built-in constraints Cb of C imply that H ′ matches the head H and imply the
guard G (cf. Figure 1).

IF H ⇔ G | B is a copy of a rule H ⇔ G | B with new variables X̄
AND CT |= ∀(Cb → ∃X̄(H = H ′ ∧ G))
THEN (H ′ ∧ C) � (B ∧ G ∧ H = H ′ ∧ C)

Fig. 1. State transition for simplification rules

If applied, a simplification rule replaces the matched CHR constraints in the
state by the body of the rule. The number of rule applications in a computation
is called derivation length. A computation terminates in the final state when the
constraint store becomes inconsistent or no rule is applicable3.

2.2 Theory T of Finite or Infinite Trees

The theory T of finite or infinite trees, which is built on an signature containing
an infinite set F of distinct function symbols, has as axioms the infinite set of
propositions of one of the three following forms:

∀X̄∀Ȳ ¬(f(X̄) eq g(Ȳ )) [A1]
∀X̄∀Ȳ f(X̄) eq f(Ȳ ) →

∧
i Xi eq Yi [A2]

∀X̄∃!Z̄
∧

i Zi eq Ti[X̄Z̄] [A3]

where f and g are distinct function symbols taken from F , X̄ is a vector of possi-
bly non-distinct variables Xi, Ȳ is a vector of possibly non-distinct variables Yi,
Z̄ is a vector of distinct variables Zi, and Ti[X̄Z̄] is a term which begins with
an element of F followed by variables taken from X̄ or Z̄.

The forms [A1], [A2], and [A3] are also called schemas of axioms of the the-
ory T . Proposition [A1] – called conflict of symbols – shows that two distinct opera-
tions produce two distinct individuals. Proposition [A2] – called explosion – shows
3 To avoid trivial non-termination, propagation is applied to the same constraints only

once.
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that the same operation on two distinct individuals produces two distinct individ-
uals. Proposition [A3] – called unique solution – shows that for a particular form
of conjunction of equations, a unique set of solutions exists in T , e.g. the formula
∃Z Z = f(Z) has a unique solution which is the infinite tree f(f(f(...))).

Maher has axiomatised the theory T and shown its completeness using a deci-
sion procedure which transforms any first-order formula into a Boolean combina-
tion of quantified conjunctions of atomic formulas [8]. A more general decision
procedure was recently given by Djelloul in the frame of decomposable theo-
ries [2]. Maher has also shown that the structure of finite or infinite trees and
the structure of the rational trees are models of T . A rational tree is a finite or
infinite tree whose set of subtrees is finite, e.g. the infinite tree f(f(f(...))) is
rational as its set of subtrees {f(f(f(...)))} is finite.

Note that T does not accept full elimination of quantifiers, e.g. in the formula
∃X Y eq f(X) we cannot remove or eliminate the quantifier ∃X . This is due
to the fact that for each model M of T there exist instantiations Ŷ of the free
variable Y which satisfy the instantiated formula ∃X Ŷ eq f(X) (for example
f(1)) and others which contradict the instantiated formula ∃X Ŷ eq f(X) (for
example g(1)). As a consequence, the formula ∃X Y eq f(X) is neither true nor
false in T and the quantifier ∃X cannot be eliminated. This makes solving exis-
tentially quantified conjunctions of equations non-trivial. We show in Section 4,
using the notion of reachable variables, how to detect whereas a quantification
can be eliminated.

3 Rational Tree Equation Solver

The CHR rational tree equation solver (RT solver) is one of the first published
CHR programs. However, this elegant solver depends on an order of terms.

3.1 The CHR Rational Tree Solver

The CHR program in Figure 2 solves rational tree equations [3,5]. This solver
dates back to late 1993 and was revised in 1998 [14]. The underlying algorithm
is similar to the one in [1], but unlike this and most other unification algorithms
it uses variable elimination (substitution) only in a very limited way, if it can-
not be avoided. As a consequence, the algorithm has to rely on an order on
terms for termination. However, this makes termination and complexity analysis
considerably harder.

We describe the RT solver where T , T1, T2 are meta-variables that range
over arbitrary terms: Auxiliary built-ins allows the solver to be independent of
the representation of terms. Besides true and false , we have var(T ) iff T is a
variable and nonvar(T ) iff T is a function term. We rely on a total pre-order �
on terms4 which fulfils three properties (defined in Subsection 3.2). As usual, we

4 A pre-order is reflexive and transitive, however it may not be antisymmetric, i.e.
from T1 � T2 and T2 � T1 we cannot conclude that T1 and T2 are equal. A pre-order
becomes an order when considering the classes of indifferent terms w.r.t. �.
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reflexivity @ X eq X <=> var(X) | true.
orientation @ T eq X <=> var(X), X≺T | X eq T.
decomposition @ T1 eq T2 <=> nonvar(T1), nonvar(T2) |

same functions(T1,T2).
confrontation @ X eq T1, X eq T2 <=> var(X), X≺T1, T1�T2 |

X eq T1, T1 eq T2.

Fig. 2. CHR Rational tree equation solver (RT solver)

write T1 ≺ T2, iff T1 � T2 and T2 
� T1. The auxiliary same functions(T1, T2)
leads to false if T1 and T2 have not the same function symbol and the same arity
(this is called clash), otherwise a constraint lists2eq(L1, L2) pairwise equates
the lists of arguments L1 and L2 of the two terms using a simple recursion:

lists2eq([HL1|TL1],[HL2|TL2]) <=> HL1 eq HL2, lists2eq(TL1,TL2).
lists2eq([],[]) <=> true.

We now explain application of each CHR rule of the solver:

reflexivity removes trivial equations between identical variables.
orientation reverses the arguments of an equation so that the (smaller) vari-

able comes first.
decomposition applies to equations between two function terms. When there

is a clash, same functions leads to false . Otherwise, the initial equation is
replaced by equations between the corresponding arguments of the terms.

confrontation replaces the variable X in the second equation X eq T2 by T1
from the first equation X eq T1. It performs a limited amount of variable
elimination (substitution) by only considering the l.h.s.’ of equations. This
rule duplicates the term T1 and the guard makes sure that T1 is not larger
than T2.

Due to the confrontation rule, the complexity of the solver is worse than
linear. The intricate interaction between the decomposition rule and the con-
frontation rule in the case of infinite terms (cyclic terms) makes it hard to
prove termination (cf. Subsection 3.2) and to determine the worst-case time
complexity of the solver (cf. Subsection 3.3).

3.2 Term Order and Termination

We define a generic term order � and prove our conjecture from [10] that the
RT solver terminates when used with �.

Definition 1 (Term order). A term order � is a total pre-order on terms
which has the following three properties5:

(i) For different variables X and Y , either X≺Y or Y ≺X.
(ii) Any variable is smaller than any function term.
(iii) Subterms are smaller than the terms that properly contain them.

5 We write T1 ≺ T2, i.e. term T1 is smaller than term T2, iff T1 � T2 and T2 	� T1.
Recall, that a term that is not a variable is a function term.
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This term order subsumes orders found in the literature, e.g. term-size order
which is based on term size.

Definition 2 (Term size and term-size order). The term size #T of a
term T is the number of occurrences of variables and function symbols. A term-
size order �s must respect properties (i) and (ii) of Definition 1 and is based on
term size by S �s T iff #S ≤ #T for two function terms.

Similarly to a term-size order �s, we can define a term-depth order �d which
is based on the nesting depths of the terms. Note that term-size and term-
depth order are not compatible, e.g. f(f(a)) ≺s f(a, a, a) in term-size order but
f(a, a, a) ≺d f(f(a)) in term-depth order. In previous work [10] we introduced
the term-measure order �m which is also not compatible to term-size order �s.

A conjunction of atomic constraints is solved (or in solved normal form) if
it is either false or if it is of the form

∧n
i=1 Xi eq Ti with pairwise distinct

variables X1, . . . , Xn and arbitrary terms T1, . . . , Tn for n ∈ N. We require Xi

to be different to Tj for 1 ≤ i ≤ j ≤ n, i.e. if a variable occurs on the l.h.s.
of an equation, it does neither occur as its r.h.s. nor as the l.h.s. or r.h.s. of
any subsequent equation. By Definition 1, we can restate the conditions for the
solved normal form to Xi ≺ Xi+1 (for 1 ≤ i < n) and Xi ≺ Ti (for 1 ≤ i ≤ n).

The RT solver computes the solved form, as can be shown by contradiction:
As long as a conjunction of constraints is not in solved from, at least one rule is
applicable. If it is in solved form, no rule is applicable.

We now show termination of the RT solver for any term order.

Theorem 1 (Termination). The derivation length of the RT solver, used with
any term order �, and for any given conjunction of equations is finite.

Proof. We abstract constraints into five disjunct sorts and study the effects of
rule applications.

Sort bi for the built-ins false or true,
Sort vv for equations X eq Y with two variables X and Y ,
Sort vt for equations X eq T with variable X and function term T ,
Sort tv for equations T eq X with function term T and variable X , and
Sort tt for equations T1 eq T2 with two function terms T1 and T2.

We give the sort transition graph of the RT solver in Figure 3: Each arrow
visualises the effect of a rule application by removing one equation of a given sort
and introducing constraints of other sorts. As the solved normal form contains
only constraints of the Sorts bi, vv, or vt we indicate this with doubled-rimmed
boxes. The built-in constraints of Sort bi are treated by the host language, they
are never removed, and there is no arrow from Sort bi. We study the effects of
each rule application in turn.

Application of reflexivity replaces the redundant equation X eq X by
true. We visualise this by the arrow from Sort vv to Sort bi, labelled with re,
in the right part of Figure 3.
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or reco co

or

de

co
bivvvttvtt

Fig. 3. Sort transition graph for the RT solver for non-flat terms

Application of orientation is possible to equations of two different sorts and
hence two arrows are labelled with or. First, an equation of Sort tv can be
changed into an equation of Sort vt, i.e. T eq X � X eq T for a variable X
and a function term T . Second, when replacing Y eq X by X eq Y for two
variables X ≺ Y , both the removed and the inserted equation are of Sort vv.
This is visualised by the self-loop labelled or attached to Sort vv.

Application of decomposition produces equations between the arguments of
the function terms of the initial equations (or false for different functors).
By the subterm property (iii) of �, the arguments or the new equations
are smaller than the initial arguments. We visualise this with dashed-dotted
arrows, labelled de, from Sort tt to all five Sorts. The non-solid arrow-heads
indicate that more than one constraint can be inserted.

Application of confrontation replaces one occurrence of the variable X by
the value of T1. The guard ensures that X ≺ T1 � T2. As long as T1 is a
variable, it gets closer from below to T2 but can never exceed it.
– For two variables T1 � T2, application of confrontation removes the

equation X eq T2 of Sort vv and inserts the equation T1 eq T2 of
Sort vv. This is indicated by a self-loop of Sort vv labelled by co.

– Similarly, for a variable T1 and a function term T2, confrontation re-
moves and inserts an equation of Sort vt, indicated by a self-loop of
Sort vt labelled by co.

If T1 is a function term, then so must be T2, and we replace equation X eq T2
of Sort vt with T1 eq T2 of Sort tt. As the guard requires T1 � T2 we
visualise this with a dashed arrow, labelled co.

Because Figure 3 contains all possible sort transitions, we show that all pos-
sible derivation paths, which are given by chaining the sort transitions for all
equations in a given problem, are finite. First note, that the number of variables
is bounded by the initial number of variables v of the problem because the solver
introduces no new variables throughout the derivation.

Clearly, rule reflexivity applies at most once to a given equation. Also, rule
orientation can apply at most once for a given equation by properties (i) and
(ii) of �. By property (i) of �, rule confrontation can apply v times when
term T1 is a variable for a given equation. It remains to prove that no infinite
derivation exists along the loop through Sort tt and Sort vt, respectively the
number of (interleaved) rule applications of confrontation and decomposition
are limited: Equations T1 eq T2 of Sort tt, that are created by confrontation,
must be eventually decomposed because there is no other possible sort transition
and the solved normal form contains no equations of Sort tt. As we have T1 � T2
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for equations of Sort tt which are generated by application of confrontation,
subsequent application of decomposition on T1 eq T2 produces terms which
are smaller than T2.

Since both the number of subterms in a given problem and the number of
variables v are finite, and since the term order is thus well-founded, the number
of confrontation/decomposition cycles is bounded. �

3.3 Exponential Complexity for Non-flat Equations

A closer look at Figure 3 allows us to prove that the derivation length is (at most)
exponential in the problem size for any term order. By giving an exponential
witness query, we also show that this result is tight for (at least) the term-size
order �s, the term-depth order �d, and the measure-order �m of [10]. Therefore,
worst-case space and (hence) time complexity of the classic CHR constraint
solver for unification is exponential.

Definition 3. The problem size #C of a problem C =
∧n

i=1 Si eq Ti is given
by

∑n
i=1 #Si + #Ti.

Before proving our first main result, we present a simple, yet basic insight on
the number of occurrences of function subterms.

Property 1. A problem containing n occurrences of function symbols contains n
occurrences of function subterms.

We now study the multi-set of function subterms for a given problem: Appli-
cation of decomposition removes two function subterms and confrontation
adds function subterms when replacing a variable X by a function term T1.
Application of confrontation in the case of a variable T1 as well as applica-
tion of reflexivity or orientation are invariant to the multi-set of function
subterms. As the RT solver only decomposes and copies terms, we have:

Property 2. All function subterms during a computation are function subterms
of the initial problem.

Let S1 � · · · � Sn be an ascending chain of all occurrences of function subterms
of a problem C. The multiplicities vector 〈#S1, . . . , #Sn〉 is defined by the cur-
rent number of occurrences of subterms during the computation, e.g. a � a �
f(a) � g(a) is an ascending chain for the problem X eq f(a) ∧ X eq g(a) and
〈1, 1, 1, 1〉, 〈2, 0, 1, 1〉, and 〈0, 2, 1, 1〉 are valid initial multiplicities vectors.

Property 3. The number of confrontation/decomposition cycles, i.e. applica-
tions of confrontation with generation of an equation of Sort tt with subse-
quent removal by decomposition (along the dashed arrow in Figure 3), for a
problem with n occurrences of function symbols is bounded by 2n.
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Replacing variable X of an equation X eq T2 by a function term T1 by appli-
cation of confrontation adds one copy of each function subterm occurrence of
term T1 to the problem. Subsequent application of decomposition on equation
T1 eq T2 removes one occurrence of both T1 and T2 from the problem.

Because the newly created equation T1 eq T2 of Sort tt can only be removed
by decomposition, no occurrences of function subterms of T1 eq T2 are effected
by intermediate applications of other rules and we do not need to manifest the
temporarily addition of T1 to the problem and can restrict ourselves to all proper
function subterms of T1. Summarising, one confrontation/decomposition cy-
cle adds one copy of each proper function subterm occurrence of term T1 and
removes one occurrence of the function subterm T2 from the problem, hence
some entries of the multiplicities vector which are left to T1’s position increase
by one and T2’s entry decreases by one.

The number of cycles is bounded by the number required to make the (canon-
ical) initial multiplicities vector 〈1, . . . , 1〉 equal to 〈0, . . . , 0〉 (as then neither
confrontation nor decomposition can apply). Furthermore, we use an upper
bound for each cycle by increasing all multiplicities to the left of T2’s entry by
one (and not only the effected entries of proper subterms of T1) and decrease
T2’s entry by one. As we increase entries to the left of a given position in the
multiplicities vector, starting form the right side yields the maximal number
of possible cycles: From 〈1, . . . , 1〉, we arrive at 〈2, . . . , 2, 0〉 after one cycle and
another two cycles bring us (via 〈3, . . . , 3, 1, 0〉) to 〈4, . . . , 4, 0, 0〉. Altogether at
most

∑n−1
i=0 2i ≤ 2n many cycles suffice.

Theorem 2. The derivation length of a problem C with problem size #C of the
RT solver using any term order is bounded by O(2#C).

Proof. Consider a problem C of initial size #C = v + n with v (occurrences of)
variables and n (occurrences of) function symbols.

Only the transition from Sort tv to Sort tt by application of confrontation
increases the problem size and the maximal number of rule applications along
the dashed arrow in Figure 3 is bounded by O(2n) = O(2#C), cf. Property 3.
Each time a variable is replaced by a term, the problem size increases by less
than #C. Hence, the maximal problem size during the computation is bounded
by O(#C 2#C) = O(2#C) and the confrontation/decomposition cycle pro-
duces no more than O(2#C) many equations.

As application of decomposition strictly decreases the problem size, it can
apply at most O(2#C) many times. For each equation, the self-loops can apply
at most v times, altogether O(3v 2#C) = O(2#C) many rule applications, and
the transition from Sort tv to Sort vt and from Sort vv to Sort bi can happen
only once for each equation, altogether O(2#C) many rule applications.

The derivation length is hence bounded by O(4 2#C) = O(2#C). �

We now present a witness query with exponential space complexity (for details
see [10]): We apply confrontation between selected equations exhaustively be-
fore application decomposition to yield a maximal number or generated con-
straints. For mutually recursively defined terms
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Ui :=

{
X if i = 0
f(Li−1, X) otherwise

Li :=

{
X if i = 0
f(X, Ui−1) otherwise

the problem C(n) = (
∧n

i=1 X eq Li) ∧ X eq Un ∧ X eq Ln has quadratic
size #C(n) = O(n2). For any term order which satisfies that Li and Ui are
indifferent (this includes �s, �d, and �m) there exists a derivation which pro-
duces exponentially many equations. Precisely 2n+1 many equations X eq X
are produced.

Our first main result is that the RT solver using any term order has exponen-
tial space and (hence) exponential time complexity. The derivation length is (at
most) exponential for any term order (and this result is even tight, e.g. for the
standard term-size order).

3.4 Quadratic Complexity for Flat Equations

We can improve the worst-case time and space complexity of the CHR rational
tree solver from exponential to quadratic by simply requiring that equations are
in flat form when the problem is given. For flat terms, property (ii) automatically
implies (iii) of the term order.

Definition 4. A conjunction of equations is in flat form if each equation con-
tains at most one function symbol.

For a conjunction of equations in flat form, application of decomposition yields
equations of Sort vv (or false for different functors) as all proper subterms for flat
terms are variables. Hence we can remove the arrows from Sort tt to Sorts tt, tv,
and vt from Figure 3 and the sort transition graph for the flat problem, given in
Figure 4, lacks the intricate interaction of confrontation and decomposition.

or reco co

or

de

co
bivvvttvtt

Fig. 4. Sort transition graph for the RT solver for flat terms

Theorem 3. The derivation length of the RT solver using any term order for
a flat problem C with problem size #C is bounded by O(#2C).

Proof. For each initial equations of Sort vt, rule confrontation can apply at
most #C times (as the number of variables is also bounded by #C) and is hence
bounded by #2C. The sort transition from Sort vt to Sort tt at most doubles
the size of each equation and subsequent application of decomposition on the
at most #C equations generates at most #C equations of Sort vv. Together
with initial equations of Sort vv, rule confrontation applies at most #C times
for each of the at most #C times many equations between two variables. �
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4 Solving Existentially Quantified Conjunctions of
Non-flat Equations in T

We extend the preceding RT solver for solving existentially quantified conjunc-
tions of non-flat equations in the theory T of finite or infinite trees with a
quadratic complexity. Solving a quantified conjunction ϕ of non-flat equations
in T means to transform ϕ into an equivalent existentially quantified conjunc-
tion φ of flat equations such that φ is either the formula true or the formula false
or a formula having at least one free variable, being neither true nor false in T
and where the solutions of the free variables are expressed in a clear and explicit
way. In particular, if ϕ has no free variables then φ is either the formula true or
the formula false . The full implementation of our extended RT solver is available
online at http://www.informatik.uni-ulm.de/pm/index.php?id=139.

4.1 Flattening Non-flat Equations in T

The following property is easily shown in T .

Property 4. For a conjunction of constraints
∧n

i=1 Si eq Ti and new quantified
variables X1, . . . , Xn we have

T |=
(

n∧

i=1

Si eq Ti

)

↔ ∃X1...∃Xn

n∧

i=1

(
Xi eq Si ∧ Xi eq Ti

)
.

For an atomic constraint X eq T , with a function term T = f(T1, . . . , Tn) and
new quantified variables X1, . . . , Xn we have

T |= X eq T ↔ ∃X1...∃Xn X eq f(X1, . . . , Xn) ∧
(

n∧

i=1

Xi eq Ti

)

.

This property shows that a conjunction of non-flat equations can be trans-
formed into an existentially quantified conjunction of flat equations by adding
new existentially quantified variables. In our CHR implementation, we traverse
the equations of the problem once and replace each nested function symbol
by a new existentially quantified variable and a new equation with that vari-
able. For example, the formula ∃X h(X, f(Y )) eq h(Y, f(X)) is flattened to
∃ABCX A eq h(X, B) ∧ B eq f(Y ) ∧ A eq h(Y, C) ∧ C eq f(X).

In previous work [10] we showed:

Property 5. The size of the flattened problem #[C] is linear in the problem size,
i.e. #[C] = O(#C). The number of new existentially quantified variables and
the number of new equations is linear in the problem size. The flattening of a
problem C can be done in linear time and space w.r.t. the problem size #C.

http://www.informatik.uni-ulm.de/pm/index.php?id=139
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4.2 Reachable Variables and Equations

The theory T does not accept full elimination of quantifiers. Hence elimination of
existentially quantified variables from a conjunction of equations is not evident.
We present the notion of reachable variables and use it to detect if a quantified
variable can be eliminated or not.

Definition 5. A basic formula is a conjunction of equations in flat form in
which all the left hand sides of the equations are variables. Let X̄ be a vector of
variables6 and let α be a basic formula. The formula ∃X̄ α is called formatted if

(i) α does not contain equations of the form Z eq Z or Y eq X with Z a
variable, X an element of X̄, and Y a free variable of ∃X̄ α;

(ii) all the left hand sides of the equations of α are distinct variables.

Let us now introduce the notion of reachable variable:

Definition 6. Let ∃X̄ α be a formatted formula. The reachable variables and
equations of α from a variable X0 (the variable X0 can possibly belong to X̄) are
those which occur in a sub-formula of α of the form

X0 = T0[X1] ∧ X1 = T1[X2] ∧ ... ∧ Xn−1 = Tn−1[Xn] ,

where the variable Xi+1 occurs in the term Ti[Xi+1]. The reachable variables
and equations of ∃X̄ α are those which are reachable in α from the free variables
of ∃X̄ α.

Example 1. In the following formatted formula with free variable Z

∃UV WX Z eq f(U, V ) ∧ V eq g(V ) ∧ W eq f(U, V, X) , (1)

the equations Z eq f(U, V ) and V eq g(V ) and the variables Z, U , and V
are reachable. The equation W eq f(U, V, X) and the variables W and X are
not reachable. Note that the quantifications ∃UV cannot be eliminated since
the existence of valid instantiations of U and V in any model M of T de-
pends on the instantiations of the free variable Z. In fact, if Z is instantiated
by g(0, 0) then the preceding formula is false in M and if Z is instantiated
by f(1, g(g(g(...)))) then the preceding formula is true in M . On the other
hand, the quantification ∃WX can be removed. In fact, according to axiom
[A3] of T we have T |= ∃W W eq f(U, V, X). Thus, (1) is equivalent in T to
∃UV X Z eq f(U, V ) ∧ V eq g(V ), which is equivalent to ∃UV Z eq f(U, V ) ∧
V eq g(V ).

Example 1 can help the reader to understand the following property:

Property 6. Let ∃X̄ α be a formatted formula. We have

T |= (∃X̄ α) ↔ (∃X̄ ′ α′)

6 This includes the empty vector ε. Recall also that an empty conjunction of equations
is always reduced to true .
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where (i) X̄ ′ is the vector of the variables of X̄ which are reachable in ∃X̄ α and
(ii) α′ is the conjunction of the reachable equations of ∃X̄ α.

This property simply states that non-reachable variables and equations of ∃X̄ α
can be eliminated while the other quantified variables are linked to the instan-
tiations of the free variables. The formatted formula ∃X̄ ′ α′ is called final solved
form of ∃X̄ α.

4.3 Reachability in CHR

The CHR implementation of Property 6 consists of the following CHR rules.

r0 @ free(X), X eq T ==> reach(X).
r1 @ reach(X), X eq T <=> nonvar(T) | reachargs(T), reach(X), X sol_eq T.
r2 @ reach(X), X eq Y <=> var(Y) | reach(Y), reach(X), X sol_eq Y.
r3 @ reach(X), exists(X) <=> sol_exists(X), reach(X).

We create CHR constraints sol_exists and sol_eq for the reachable existen-
tially quantified variables and the reachable equations of any formatted formula
∃X̄ α. Recall that ∃X̄ α is a formatted formula (cf. Definition 5) for termination
and correctness.

Initially, free variables of the formatted formula ∃X̄ α are stored in CHR
constraints free and existentially quantified ones in exists. All free variables
which occur as l.h.s. of an equation of the formatted formula ∃X̄ α are marked
as reachable by rule r0. Rules r1 and r2 mark the reachable equations. For a
flat term T , the built-in reachargs(T ) of rule r1 marks all arguments of T as
reachable, by a simple recursion for an auxiliary constraint with rules similar to
the ones for lists2eq of the RT solver. Rule r3 marks the reachable quantified
variables.

The complexity of this algorithm is bounded by O(vq) where v is the number of
distinct variables in the formatted formula ∃X̄ α and q is the number of equations
of α. Since the left hand sides of α are distinct variables (cf. Definition 5) we
have q ≤ v from which we deduce the following property:

Property 7. The derivation length of reachability is bounded by O(v2), where v
is the number of distinct variables in the formatted formula.

4.4 The Solving Algorithm

To solve an existentially quantified conjunction ∃X̄ α of non-flat equations we
apply the following algorithm.

(1) Transform ∃X̄ α into an equivalent existentially quantified conjunction
∃Ȳ β of flat equations.

(2) Apply the RT solver on β using a term-order where the variables of Ȳ are
smaller than the free variables of ∃Ȳ β. Let δ be the obtained formula.

(3) If δ is different from false7 then ∃Ȳ δ is a formatted formula whose final
solved form is obtained using our CHR reachability rules.
7 Note that CHR terminates immediately when false is inserted in the store.
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Example 2. Let us solve the following formula with free variables X and V

∃Y Z f(X) eq f(g(X, Y )) ∧ Z eq f(V ) ∧ Z eq f(f(Y )) .

After flattening we get

∃Y ZABCD A eq f(X) ∧ B eq f(D) ∧ A eq B ∧ D eq g(X, Y )∧
Z eq f(V ) ∧ Z eq f(C) ∧ C eq f(Y ) .

The RT-solver returns the following formatted formula

∃Y ZABCD B eq f(X) ∧ D eq X ∧ A eq B ∧ X eq g(X, Y ) ∧ C eq V ∧
Z eq f(C) ∧ V eq f(Y ) .

We now compute the reachable variables X , V , and Y and eliminate the quantifi-
cations ∃ABCDZ and the equations B eq f(X), D eq X , A eq B, C eq V ,
Z eq f(C). The final solved form of the preceding formatted formula is

∃Y X eq g(X, Y ) ∧ V eq f(Y ) .

Note that the solutions of the free variables X and V are expressed in clear and
explicit way. Moreover the quantifier ∃Y could not be eliminated since Y is a
reachable variable, i.e. it depends on the instantiations of X and V .

From Theorem 3, Property 7, and Property 5 we have

Theorem 4. The derivation length of an existentially quantified non-flat prob-
lem C with problem size #C of the extended RT solver is bounded by O(#2C).

5 Conclusion

The complexity of the classic CHR rational tree equation solver [3,5,14] was an
open problem for more than a decade. We showed in this paper its termination
and exponential complexity in time and space for any term order when handling
non-flat equations, as well as its quadratic complexity for flat equations. This
part of our new results extends those given in [10], which were limited to an
artificial term-measure order.

Moreover we extended the solver to handle existentially quantified conjunc-
tions of non-flat equations in quadratic time and space complexity. For that, we
first flatten the equations by introducing new quantified variables, then solve
the flat problem by the classic RT solver, and finally remove particular quanti-
fiers and equations. Our new results extend those given in [10] by introducing
existentially quantified variables and removing unnecessary quantified variables
and equations using reachability. We are now able to express the solutions of any
existentially quantified conjunction of non-flat equations in a short, clear, and
explicit way in all models of the theory T .

To the best of our knowledge, this is the first CHR solver for existentially
quantified conjunctions of non-flat equations in T with quadratic complexity.
Future work aims to reach a linear complexity solver by combining our extended
RT solver with the union-find algorithm in CHR [13,4].
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Abstract. In this paper we present a novel approach to solving Constraint Satis-
faction Problems whose constraint graphs are highly clustered and the graph of
clusters is close to being acyclic. Such graphs are encountered in many real world
application domains such as configuration, diagnosis, model-based reasoning and
scheduling. We present a class of variable ordering heuristics that exploit the clus-
tered structure of the constraint network to inform search. We show how these
heuristics can be used in conjunction with nogood learning to develop efficient
solvers that can exploit propagation based on either forward checking or main-
taining arc-consistency algorithms. Experimental results show that maintaining
arc-consistency alone is not competitive with our approach, even if nogood learn-
ing and a well known variable ordering are incorporated. It is only by using our
cluster-based heuristics can large problems be solved efficiently. The poor per-
formance of maintaining arc-consistency is somewhat surprising, but quite easy
to explain.

1 Introduction

Solving real-world Constraint Satisfaction Problems (CSPs) can prove difficult for a
number of applications, such as scheduling [17], frequency assignment problems [13],
multi-commodity flow congestion control [10], and protein structure prediction [20].
Problems of this nature are typically posed as a network over which a set of constraints
are defined. For example, for multi-commodity flow, the nodes in the network corre-
spond to locations (warehouses and shipment locations), and the edges in the network
correspond to links between locations (roads). The constraints specify capacities of
links, among other things.

The complexity of these network-structured problems can be specified in terms
of their graph parameters. In general, the overall problem is NP-hard; however, the
complexity can be defined as being exponential in the tree-width of the network [4].
Roughly, the more tree-like the network is, the easier it is to solve. Tree-structured
CSPs are important in that inference is polynomial. Inference in tree-structured CSPs
has been heavily studied in the literature. Within the CSP community, it has been ad-
dressed in [7,3,5].

Because of the efficiency of inference in tree-structured CSPs, researchers have de-
veloped several methods for converting a CSP Z into a tree-structured CSP Z ′. These
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methods include using tree-decomposition algorithms [1], and then performing infer-
ence on Z ′ [11,6], or performing a structural compilation of the problem [18].

In this paper we propose a novel approach to efficiently solve clustered CSPs whose
meta-constraint graph (the graph in which each cluster is replaced by a meta-variable)
is close to a tree but not completely acyclic. This approach does not rely on a compila-
tion of the problem. Instead we develop a class of search heuristics that can exploit the
clustering in the problem to help dramatically improve the efficiency of search. Using
these search heuristics we propose an efficient algorithm for solving clustered CSPs
that combines constraint propagation and nogood recording. Our main result is that the
proposed method obliviously recognizes (without spending any computational effort to
do the recognition) when the meta-constraint graph of the problem becomes acyclic
and, if that happens, solves the underlying CSP efficiently. Our algorithm assumes that
the clustered structure of the CSP has either been identified by the user, or in a prepro-
cessing step; usually this is a simple task to approximate manually. An algorithm that
exploits our search heuristics, with nogood learning and constraint propagation, can be
seen as exploiting a backdoor set of variables [19] that are not equivalent to a cycle cut-
set [5]. Our experiments show that MAC augmented with nogood learning and a good
fail-first heuristic is significantly out-performed by a solver based on our cluster-based
search heuristics when tested on clustered CSPs with a large number of variables.

The remainder of the paper is organized as follows. In Section 2 we introduce our
notation. In Section 3 the basic algorithm is presented in terms of constraint propaga-
tion using forward checking, along with a deep theoretical analysis of it. We present a
generalization of the algorithm in Section 4 that incorporates MAC, and also a simpli-
fied nogood recording scheme. An empirical evaluation of the algorithm is presented in
Section 5. Finally, in Section 6 we make some concluding remarks and briefly outline
our future work.

2 Background

2.1 Terminology

A Constraint Satisfaction Problem (CSP) Z is a triplet (V, D, C), where V is a set of
variables, and D is the set of domains of values for each variable. We use the notation
〈u, val〉 to say that val is a value of variable v. A tuple of values is a set of values of dif-
ferent variables. If 〈u, val〉 belongs to a tuple T , we say that 〈u, val〉 is the assignment
of u in T . The last item, C, of Z is the set of constraints. We represent each constraint
c ∈ C as a set of forbidden tuples of values to the variables constrained by c.1 A partial
solution is a tuple of values that contains no forbidden tuple as a subset. A complete
solution or just a solution is a partial solution assigning all the variables of V . To solve
a CSP is to find one of its solutions or to prove that no solution exists.

Let V ′ be a set of variables assigned by a forbidden tuple T . We say the variables of
V ′ are constrained. If all the forbidden tuples have length 2, we get a binary CSP. The
forbidden tuples of a CSP are often referred to as conflicts.

1 We employ an unusual definition of a constraint because it is more convenient for our
discussion.
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A tuple T of values is a nogood if it is a forbidden tuple or if any extension of it to
a tuple that assigns all the variables contains a forbidden tuple. In particular, if a partial
solution is a nogood then it cannot be extended to a full solution.

2.2 The FC-EBJ Algorithm

In this paper we design CSP solvers that, besides solving a CSP, achieve some theoreti-
cal guarantee on their runtime. We assume the reader is familiar with constraint solvers
like Forward Checking (FC) [9] and Maintaining Arc-Consistency (MAC) [16]. All the
constraint solvers maintain additional data structures where they keep the results of
intermediate computation. We introduce some additional terminology related to these
data structures.

The run of a constraint solver consists of a number of iterations where it enumerates
partial solutions in order to extend them to a full solution or to prove that none exists.
If we consider a particular iteration occurring during the execution of a solver then the
partial solution P that the solver tries to extend at that iteration is called the current
partial solution. At the considered iteration, some values may be temporarily removed
from their domains because the solver detected that they cannot be utilized to extend the
current partial solution. The values that are not removed from their domains are called
valid values at that iteration. The set of valid values of variable v is called the current
domain of v.

As stated above, a value 〈u, val〉 is removed from the current domain of u because
P ∪{〈u, val〉} cannot be extended to a full solution, in other words, it contains a nogood
T . The set T \ {〈u, val〉} (which is a subset of the current partial solution) is called an
eliminating explanation of 〈u, val〉.

The only reason why a complete constraint solver removes a value from its current
domain is that it has found (implicitly or explicitly) an eliminating explanation for it.
Some algorithms, like FC and MAC, do not record eliminating explanations explicitly
but there are other algorithms, like DBT [8] or MAC-DBT [12], that do. A simple way
to transform FC into an algorithm maintaining eliminating explanations is to introduce
the following three modifications (in all the items below P denotes the current partial
solution).

– If a value 〈u, val〉 is removed because P ∪{〈u, val〉} contains a forbidden tuple T ,
〈u, val〉 is associated with the eliminating explanation T \ {〈u, val〉}.

– If a value 〈u, val〉 is removed by backtracking caused by the empty current do-
main of some variable v, the eliminating explanation of 〈u, val〉 is the union of
elimination explanations of all values of a variable v minus 〈u, val〉.

– A removed value is restored in the current domain only when its eliminating expla-
nation becomes obsolete, i.e. it is no longer a subset of P .

It follows from the last property that this algorithm possesses the ability to backjump
[14]. For example, if the domain of the currently unassigned variable v is wiped out, but
the last assignment in the eliminating explanations of the values of v is 〈u, val〉 assigned
10-th to the last, the domain of v will remain empty until 10 consecutive backtracks (or
one backjump of length 10) are performed. Thus the algorithm may be viewed as a mod-
ification of FC-CBJ [14], which maintains separate “conflict sets” for every value. We
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term this algorithm FC-EBJ, replacing Conflict-Directed Backjumping by Explanation-
Directed Backjumping. FC-EBJ is almost analogous to the CCFC- algorithm [2] with
two differences. First, the description of CCFC- is not based on eliminating explana-
tions which makes it less convenient for our discussion. Second, CCFC- is formulated
for binary constraints only, while FC-EBJ can solve any CSP.

3 Recognizing Clustered Acyclic CSPs

Consider a CSP whose variables are partitioned into clusters specified by the user. The
given CSP is clustered acyclic if, after contraction of the clusters so that they become
single vertices, the constraint graph of the given CSP is transformed into a tree. A
clustered acyclic CSP can be solved with a complexity equivalent to that of solving the
CSP associated with the largest cluster multiplied by the number of clusters, which is
much faster than traditional backtracking if the clusters are small.

There are CSPs corresponding to real-world problems that can be divided into rel-
atively small clusters such that the constraint graph resulting from the contraction of
these clusters is close to a tree, some of which were discussed in Section 1. Therefore,
it would be worthwhile to design a search algorithm that can recognize that the CSP
induced by the current domains of unassigned variables is a clustered acyclic CSP and,
if that happens, solves the given CSP efficiently. A straightforward approach to do that
is to apply a checking procedure after every instantiation made by the search algorithm.
However, this approach requires additional time for checking the desired property and
thus might be not worthwhile. In this section we propose an alternative approach for
recognizing clustered acyclic CSPs. In particular, we show that FC-EBJ combined with
nogood learning and guided by a specially designed variable-ordering heuristic oblivi-
ously recognizes clustered acyclic CSPs without spending additional time or memory.

The starting point for the design of the proposed method was the observation that
FC-EBJ solves a tree-like CSP polynomially if the variables are assigned in a depth-
first search (DFS) manner with respect to the constraint graph of the given CSP. Next,
we observed that FC-EBJ can benefit from exploring the constraint graph in a DFS-like
manner even if the given CSP is not acyclic. In particular, let P be the current partial
solution maintained by FC-EBJ. If the residual CSP (the result of projecting the un-
derlying CSP to the unassigned variables and removing values incompatible with P ) is
acyclic then FC-EBJ takes polynomial time to check whether P can be extended to a
full solution or it is a nogood. What is most interesting is that FC-EBJ neither “knows”
that the residual CSP is acyclic nor applies any additional effort to recognize that. The
algorithm just proceeds exploring the search space as before and the polynomial time
complexity of exploring the residual CSP “comes” automatically. We say that FC-EBJ
with a special ordering heuristic obliviously recognizes acyclic CSPs. Our last obser-
vation was that if this ordering heuristic is combined with nogood learning then the
resulting version of FC-EBJ obliviously recognizes acyclic clustered CSPs.

It is worth noting that the proposed method differs from the traditional approach of
compiling clusters and treating them as meta-variables with the set of solutions to the
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clusters as meta-values2. Instead, we implicitly apply a “lazy” compilation. That is,
solutions to clusters may be learned as nogoods if the underlying CSP is hard and,
in the worst case, the proposed algorithm has the same time and space complexity as
the traditional method. However, if the underlying CSP is not too hard, it might be
solved by the proposed algorithm without any compilation at all. This “compile when
needed” paradigm results in huge time savings, as witnessed by the work of Bayardo
and Miranker [3].

We begin the description of the proposed method from the formal definition of an
acyclic clustered CSP.

Definition 1 (Clustered Acyclic CSP). Let Z = (V, D, C) be a CSP and let SV =
{V1, . . . Vl} be a partition of V . Assume that each constraint in C constrains variables
that belong to at most two different elements of SV . Let H be a constraint graph of
Z i.e. a hypergraph with the vertices corresponding to V and the hyperedges corre-
sponding to the subsets of V , which are scopes of the constraints of C. Consider the
graph H ′ obtained from H by contracting the sets V1, . . . Vl to single vertices v1, . . . vl,
removing the loops, and replacing the multiple edges by single edges. (According to
our assumption all the edges of the resulting graph are binary). We denote by H ′ the
clustered graph of Z with respect to SV . We say that Z is a clustered acyclic CSP with
respect to SV , if H ′ is acyclic.

Figure 1 illustrates the notion of acyclic clustered CSP. The dots represent CSP vari-
ables. All the constraints are binary. The constrained variables are connected by lines.
The set of clusters SV = {{V1, V2, V3}, {V4, V5, V6}, {V7, V8, V9}}. Clearly, as a result
of contraction of these clusters, we get an acyclic constraint graph.

Fig. 1. Illustration of an acyclic clustered CSP

To proceed, we need to extend our notation regarding acyclic clustered CSPs. Let Z
and SV be as in Definition 1. We denote by M(Z, SV ) the maximal number of partial
solutions of a CSP created by the variables of Vi (i.e. the CSP consisting of the variables
of Vi, their domains and the forbidden tuples assigning the variables of Vi only) among
all Vi ∈ SV . Let v be a variable of Z . We denote by Cl(v) the cluster of SV that v
belongs to.

Now, we combine the FC-EBJ solver (Section 2.2) with a nogood learning procedure.
Everytime a value 〈u, val〉 is removed, and the removal is justified by an eliminating
explanation P ′, the resulting algorithm records the nogood P ′ ∪ {〈u, val〉} in the store
of nogoods. Nogoods are discarded from the store according to the following algorithm.

2 In this setting recognizing clustered acyclic CSPs is equivalent to recognizing acyclic CSPs.
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Let (〈v1, val1〉, . . . , 〈vk, valk〉) be a nogood recorded in the store. Assume the as-
signments are listed in the chronological order of their appearance in the current partial
solution and the assignments that do not belong to the current partial solution are listed
at the end ordered arbitrarily. Assume that for some l < m < k, Cl(vl+1) = . . . =
Cl(vm) and Cl(vm+1) = . . . = Cl(vk) but Cl(vm) �= Cl(vk). Then the nogood is
stored until the assignment 〈vl, vall〉 becomes obsolete (removed from the current par-
tial solution). In other words, a nogood is stored until its obsolete part assigns variables
of 3 or more clusters. All the time the nogood is stored, it is considered by the algorithm
as a forbidden tuple. We call the resulting solver FC-EBJ-NL (NL is the abbreviation
of Nogood Learning).

Proving the properties of FC-EBJ-NL, we extensively use the notions defined below
(recall that P always denotes the current partial solution).

Definition 2 (Actual Forbidden Tuple). Let S be a forbidden tuple (either original or
dynamically acquired). We say that S is actual if it satisfies one of the following two
conditions:

– There is a removed value 〈u, val〉 ∈ S such that S \ {〈u, val〉} is the eliminating
explanation for 〈u, val〉.

– All the variables of V (S \ P ) (recall that P is the current partial solution) are
unassigned and all the values of S \ P belong to the current domains of their
variables.

Thus a forbidden tuple is actual if it is either used for pruning domain values or still
may be violated by an extension of the current partial solution.

Definition 3 (Current CSP and Current Set of Clusters). Let P be the current
partial solution of FC-EBJ-NL applied to a CSP Z with a set of clusters SV .

– The current CSP Z ′ has the set of variables V (Z) \ V (P ). The domain of each
variable u ∈ V (Z ′) is the current domain of this variable. The constraints are
defined as follows: for each actual forbidden tuple Q of Z including the values
of Z ′, the tuple Q \ P is forbidden in Z ′. (The definition includes the forbidden
tuples dynamically stored during the solution process at the considered moment of
execution of FC-EBJ-NL.)

– The current set of clusters SV ′ is obtained from SV by removing the variables
assigned by P from each cluster of SV .

The proposed class of ordering heuristics includes any ordering heuristic that satisfies
the following three conditions.

1. The first variable is selected arbitrarily.
2. Let u be the last assigned variable and let Vi be the cluster containing u. Assume

that Vi contains an unassigned variable. Then the variable assigned next to u be-
longs to Vi.

3. Assume that each cluster is either fully assigned or fully unassigned. Let V ′ be an
unassigned cluster sharing an actual forbidden tuple S (either original or dynami-
cally acquired) with the chronologically latest possible assigned cluster V ′′ (in the
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sense that S involves variables of both clusters). Then select any variable of V ′. If
there is no cluster V ′ as above, i.e. no assigned cluster shares an active forbidden
tuple with an unassigned cluster, then select an arbitrary variable.

The last item of the above description has a much simpler formulation for the bi-
nary case: select a variable whose domain values are removed because of conflicts with
the latest possible assigned cluster. We call the class of heuristics satisfying the above
conditions LCC, which is the acronym for Last Conflicting Cluster.

The main theorem regarding FC-EBJ-NL using a LCC heuristic is as follows.

Theorem 1 (Main Result). Assume that FC-EBJ-NL guided by a LCC heuristic is
applied to a CSP Z with a collection of clusters SV . Let P be the current partial solu-
tion, let Z ′ be the current CSP, and let SV ′ be the current set of clusters. Assume that
Z ′ is a clustered acyclic CSP with respect to SV ′. Then the algorithm checks whether
P can be extended to a full solution (and returns such a solution if yes, or refutes P if
no) in time M(Z ′, SV ′)2 ∗ (|SV ′| − 1).

Lemma 1. Assume that FC-EBJ-NL is applied to a CSP Z with a set of clusters SV
and consider an intermediate iteration that occurs during the processing of Z . Let P
be the current partial solution, Z ′ be the current CSP, and SV ′ be the current set of
clusters. Then the number of iterations spent by FC-EBJ-NL in order to check whether
P can be extended to a full solution equals the number of iterations spent by FC-EBJ-
NL in order to solve Z ′.

Proof of Lemma 1 is elementary but quite lengthy, we omit the proof due to space
constraints. According to Lemma 1, Theorem 1 is implied by the following theorem.

Theorem 2. Let Z be a clustered acyclic CSP with respect to a set of clusters SV .
Then FC-EBJ-NL guided by a LCC heuristic solves Z performing at most M(Z, SV )2∗
(|SV | − 1) backtracks.

Proof of Theorem 2. To prove Theorem 2, we recall the way the clusters of Z are as-
signed by the LCC heuristic. After the full assignment of the first cluster V1, the heuris-
tic selects the next cluster V2 such that V2 “shares” nogoods with the assignments of V1,
the next cluster V3 is selected on the same principle with respect to V2 and, if impos-
sible, with respect to V1. Proceeding analogously, having assigned clusters V1, . . . , Vk,
the algorithm selects the next cluster Vk+1 so that it is constrained with the assignments
of an already assigned cluster Vi, 1 ≤ i ≤ k, such that i is as large as possible.

However, the above process is not always successful. It may happen that after as-
signing clusters V1, . . . , Vk no unassigned cluster is constrained with the assignments
of these clusters. In this case, the clusters V1 . . . Vk constitute a link and the algorithm
starts a new link. The partial solution P consists of a number of consecutive links. Each
link has the root, i.e. the cluster, which is fully assigned first. Each cluster Vi of a link
which is not the root of the link has a parent, i.e. the cluster which certified the addition
of Vi to the link (in the last item of the description of the LCC heuristics, cluster V ′′

certifies the addition of cluster V ′ to a link). This structure of the current partial solution
allows us to prove the following lemma.
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Lemma 2. Assume that FC-EBJ-NL guided by the LCC heuristic discards a value
〈u, val〉 at some state during its execution and associates it with the eliminating ex-
planation T . Then T ′ = T ∪ {〈u, val〉} assigns at most two clusters. Moreover, if a
cluster V ′ other then Cl(u) is assigned by T ′ then

– Cl(u) is not assigned by the current partial solution or V ′ is the parent of Cl(u);
– Vi and Cl(u) are adjacent in the cluster graph of Z .

Proof of Lemma 2 (sketch). We consider the chronological sequence of eliminating ex-
planations generated by FC-EBJ-NL and apply induction on this sequence. Let T ′ be
the first eliminating explanation generated by FC-EBJ-NL. Clearly, T ′ is a forbidden
tuple of Z , hence the adjacency condition holds automatically for this case. According
to the structure of Z ′, T ′ assigns at most two clusters. Assume that Cl(u) is partially
assigned and let us show that if T ′ assigns exactly two clusters then it assigns, besides
Cl(u), the parent Vi of Cl(u). Assume that T ′ assigns a cluster Vj other than Vi. Ob-
serve first that Vi and Vj are both fully assigned.

If Vi and Vj belong to the same link then, according to the behaviour of the LCC
heuristic, there is a path from Vi to Vj in the clustered tree which includes only assigned
clusters of their link. Since T ′ is the first nogood generated by FC-EBJ-NL, the next
cluster is selected as sharing an original forbidden tuple with the previous clusters.
Therefore clusters that get to the same link induce a connected subgraph of the clustered
graph of Z . On the other hand, there is a path from Vi to Vj through Cl(u), which is
not fully assigned (u is unassigned at the moment 〈u, val〉 is removed). It follows that
there are two paths from Vi to Vj in the clustered tree, a contradiction.

If Vi and Vj belong to different links then T ′ is a forbidden tuple connecting clusters
Vj and Cl(u). If at the moment the link of Vj is fully assigned, all the values of T ′ are
valid then we get contradiction to that fact that the new link is started. If some of the
values of T ′ are removed, they are associated with eliminating explanations involving
the variables of the link of Vj or an earlier link. In any case, it is a contradiction that
Cl(u) belongs to a link assigned later than the link of Vj .

Consider now a nogood T ′ with the assumption that the eliminating explanations
generated prior to it satisfy the conditions of the lemma. The following claims hold at
the moment of generating T ′ (their proofs are omitted due to space constraints).

1. Each cluster of an existing link is adjacent to its parent in the clustered graph of Z .
2. Let Vj and Vk be two clusters assigned by a stored actual nogood S and assigned

by the current partial solution. Then one of them is the parent of the other.

Given the above observations, we prove the present lemma for each possible way a
new nogood T ′ may be generated.

– T ′ is an original or acquired forbidden tuple. By the structure of Z ′ and the
induction assumption, T ′ assigns at most two clusters. If T ′ assigns exactly two
clusters, assume that Cl(u) is assigned by the current partial solution and we prove
that the other assigned cluster is the parent Vi of Cl(u). If we assume that the other
assigned cluster is some Vj that belongs to another link then we get a contradiction,
analogously to the basic case. If we assume that the other assigned cluster belongs
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to the same link as Cl(u) then applying the first observation from the above list and
the induction assumption, we derive the existence of a cycle in the clustered graph
of Z .

– T ′ is the union of eliminating explanations of a variable v with the empty do-
main. If Cl(v) is assigned by the current partial solution then, by the second ob-
servation from the above list, the nogood associated with each value of v assigns
the parent of V (if it assigns any cluster besides Cl(v)). Clearly, the union of the
eliminating explanations has the same form. If Cl(v) is not assigned by the current
partial solution then assume that there are two nogoods T1 and T2 associated with
values of v which assign distinct clusters, both different from Cl(v). By the induc-
tion assumption, both these clusters are adjacent to Cl(v) in the clustered graph of
Z hence they belong to different links. Assume that T1 involves an earlier assigned
link. This means that there is an actual forbidden tuple involving variables of that
link in contradiction to the fact that a new link has been started. �

Thus Lemma 2 proves that nogoods discovered by FC-EBJ-NL assign at most two
clusters and if two clusters are assigned, they are adjacent in the clustered tree of the un-
derlying CSP. For each pair of clusters there are at most M(Z, SV )2 possible nogoods
assigning those clusters. Also there are |SV | − 1 pairs of adjacent clusters. Hence, the
number of nogoods of the above type is at most M(Z, SV )2 ∗ (|SV | − 1). Each no-
good, once recorded in the nogood store, is never removed from there because, to be
removed, a nogood must assign at least three different clusters. It follows that no no-
good is discovered by a backtrack more than once. Consequently, FC-EBJ-NL spends
at most M(Z, SV )2 ∗ (|SV | − 1) backtracks solving a clustered acyclic CSP. Thus we
have proved Theorem 2 and, as a result, Theorem 1. �

4 Enhancements of the Basic Recognition Algorithm

In this section we discuss two modifications of the FC-EBJ-NL algorithm presented in
Section 3. The first modification introduces achieving arc-consistency as the constraint
propagation method. The second modification simplifies the procedure of nogood
learning.

4.1 Recognizing Acyclic CSP Together with MAC

Let us formulate the MAC-EBJ-NL algorithm. In addition to the propagation performed
by FC-EBJ-NL, MAC-EBJ-NL removes unsupported values. More precisely, let u and
v be two unassigned variables. If MAC-EBJ-NL detects that a value 〈u, val〉 of the
current domain of u is inconsistent with all the values of the current domain of v (in the
sense that 〈u, val〉 has binary conflicts with all these values either existing or produced
by propagation of non-binary forbidden tuples), the following operations are performed:
computing S, the union of eliminating explanations of all the values of v; removing
〈u, val〉 and associating it with eliminating explanation S; recording S ∪ {〈u, val〉} in
the nogood store.

We consider two versions of MAC-EBJ-NL. In the first version, which we call Clus-
tered MAC-EBJ-NL, variables u and v, as above, must belong to the same cluster, i.e.
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Cl(u) = Cl(v). In other words, 〈u, val〉 is not removed if it is unsupported by variable
v that does not lie in the same cluster as u does. The second version of MAC-EBJ-NL
performs full MAC, checking any pair (u, v) of constrained variables.

It turns out that Clustered MAC-EBJ-NL preserves the property of FC-EBJ-NL, that
is, recognizes a clustered acyclic CSP Z performing at most M(Z, SV )2 ∗ (|SV | − 1)
backtracks. Observe that the nogood T resulting from removing 〈u, val〉 unsupported
by a variable v consists of 〈u, val〉 and the union of eliminating explanations of all the
removed values of v. Applying the same induction principle as in Lemma 2, we may
assume that the union of the eliminating explanations assigns, besides Cl(v), at most
one cluster V ′. If Cl(u) = Cl(v) then clearly the resulting nogood T preserves the
same property.

Surprisingly enough, full MAC-EBJ-NL does not preserve this property of FC-EBJ-
NL. The reason is that when a value 〈u, val〉 is removed as being unsupported by a
variable v from another cluster, the nogood produced as a result does not necessarily
satisfy the conditions stated in Lemma 2. In particular, if Cl(v) is an assigned cluster
and Cl(u) is not the parent of Cl(v) then, as a result of removing 〈u, val〉, the obtained
nogood might contain three clusters: Cl(v), the parent of Cl(v), and Cl(u). One can
show that because of the above phenomenon, nogoods assigning an arbitrary number
of clusters may be generated and a bad ordering of values can cause an exponential
number of generated nogoods. We omit the complete proof of this fact due to space
constraints.

4.2 Simplifying the Nogood Learning Procedure

FC-EBJ-NL uses quite a complicated mechanism for removing obsolete nogoods. This
mechanism is useful for the proof of Theorem 1 but it might be difficult for the practical
implementation. In this section we present an alternative nogood learning procedure and
show that FC-EBJ combined with this procedure efficiently recognizes acyclic clustered
CSPs.

The proposed mechanism of learning allocates K “slots” for nogoods given some
predefined constant K . Initially all these slots are empty. The first learned nogood is
stored in the first slot, the next nogood is stored in the second one, then in the third and
so on. No nogood is discarded until all the slots are occupied. Once this happens, the
first nogood stored after that goes to the first slot erasing the nogood stored there before
that, the next one goes to the second slot with the same effect and so on. In other words,
this is a mechanism of nogood learning that uses a store of a constant size and removes
the “oldest” nogood in case of overflow.

The following proposition, whose proof is omitted due to space constraints, makes
the above storage useful for our purposes.

Proposition 1. Fix some two states during the execution of a constraint solver which
uses the above nogood recording mechanism. Assume that at most K nogoods are
stored by the solver between these two states. Then none of these K nogoods is erased
until the second state is reached.

Given a CSP Z with the set of clusters SV , set K = M(Z, SV )2 ∗ (|SV | − 1). As-
sume that at some moment during the execution of FC-EBJ-NL, the current CSP is a
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clustered acyclic one. By Theorem 1, in order to recognize an acyclic CSP, FC-EBJ-NL
detects at most K nogoods provided that no one of them is discarded during the process
of recognition. According to the Proposition 1, the presented mechanism of nogood
learning guarantees they are not discarded. It follows that acyclic clustered CSPs can be
efficiently recognized given the presented nogood learning mechanism which is much
simpler than the one described in Section 3.

5 Experimental Evaluation

In this section we report results of an empirical evaluation carried out in order to assess
the practical merits of our approach to efficiently recognize acyclic clustered CSPs.
We performed experiments on clustered random problems. We generated these prob-
lems using the following parameters: number of variables (num var); domain size
(dom size); size of cluster (size cluster), which always divides num var; the num-
ber of clusters (num clusters = num var/size cluster); additional connectivity
(add connect), a number from 0 to 99; cluster density (cp1); cluster tightness (cp2);
external density (ep1); external tightness (ep2).

Given these parameters, a CSP is generated by the following process:

1. Create the graph of clusters GC. Create num cluster vertices v1, . . . ,
vnum clusters. Then generate a tree on these vertices as follows. First the tree con-
sists of vertex v1. Assume that the current tree consists of vertices v1, . . . , vi. The
new vertex vi+1 is connected to one of the existing vertices selected uniformly at
random. Having created the spanning tree, additional edges are introduced as fol-
lows. For each pair of non-adjacent vertices of the tree, a number between 0 to 99
is chosen at random. If this number is smaller than add connect then the corre-
sponding edge is introduced.

2. Fill each cluster with variables. For each cluster, size cluster variables are gen-
erated. One of these variables per cluster has dom size/2 values in its domain (or
(dom size−1)/2 in case dom size is odd). The domain size of the rest of the vari-
ables in a cluster is dom size. The reason of introducing one variable per cluster
with a smaller domain size will be clear when we present the experimental results.

3. Create conflicts within clusters. This is done analogously to the well-known gen-
erator of Prosser [15] given parameters cp1 and cp2 which are analogous to the
parameters p1 and p2 introduced by Prosser, respectively. In particular, the param-
eter cp1 serves as the probability that there is a constraint between two particular
variables in the given cluster. If the constraint exists, the parameter cp2 determines
the probability of a conflict between two values of the given variables.

4. Create conflicts between variables of different clusters. For each pair of vari-
ables u and v that belong to different clusters connected by an edge in GC, param-
eter ep1 serves as the probability that there is a constraint between u and v. If the
constraint exists, the parameter ep2 serves as the probability that the given pair of
values, one from u, the other from v, are conflicting.

In our experiments we took num var = 100, dom size = 10, size cluster = 10.
That is, the generated CSPs have 100 variables partitioned into 10 clusters, 10 variables
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in each one. The additional connectivity is selected to be 5, that is, the topology of
the graph of clusters is close to a tree. We performed tests for two values of cluster
density: 80% and 90%. We selected just these values because clusters must be dense “by
definition”. For cluster density of 80% we chose the cluster tightness of 30%, for cluster
density of 90% the chosen cluster tightness is 25%. The external density is always 10%.
The external tightness is the varied parameter.

The rest of the section is divided into 2 subsections. In the first subsection we com-
pare MAC-based algorithms, in the second subsection FC-based algorithms are com-
pared.

5.1 Comparison of MAC-Based Algorithms

We have tested the following MAC-based algorithms:

– MAC-EBJ, i.e. the solver that maintains arc-consistency, records eliminating
explanations for the removed values but employs no nogood learning. The smallest-
domain first (a Fail-First – FF) heuristic [9], i.e. the heuristic that selected the small-
est domain first, was used to guide the search performed by MAC-EBJ.

– MAC-EBJ-NL with the FF heuristic (referred as MAC-EBJ-NL-FF), i.e. the solver
like the previous one with the only difference that a nogood learning mechanism is
employed.

– MAC-EBJ-NL with a LCC heuristic (referred as Full MAC-EBJ-NL-LCC). The
ties are broken by the FF heuristic, i.e. every time when a set of variables may be
selected by the LCC heuristic, the one with the smallest domain is selected from
this set.

– The same solver as the previous one but performing Clustered MAC (referred as
Clustered MAC-EBJ-NL-LCC).

The algorithms above are tested on the two sets of instances presented in the intro-
ductory part of the section. We now explain why the instances are designed so that there
is one variable per cluster with a smaller domain. This is done in order to “fool” the FF
heuristic. Without that trick, the FF heuristic guides the search pretty much like an LCC
heuristic which make the comparison of LCC and FF heuristics senseless.

Figures 2 and 3 show the behaviour of the last three solvers on sets of instances pre-
sented at the introductory part of the section. All the solvers use the simplified nogood
learning mechanism described in Section 4.2. The size of the store is 10000 nogoods.
The computational effort is measured in the number of backtracks. For each set of pa-
rameters, the result is obtained as the average of 50 runs. A run is stopped if it takes
more than 50000 backtracks.

According to our experiments, MAC-EBJ (the solver mentioned first) was unable
to solve most of the problems in the allocated number of iterations, hence we do not
illustrate its behaviour in the figures.

One can see that both Full and Clustered MAC-EBJ-NL-LCC essentially outperform
MAC-EBJ-NL-FF. In particular, for density of 90% at the phase transition region, Full
MAC-EBJ-NL-LCC performs about 8 times better and Clustered MAC-EBJ-NL-LCC
performs about 3 times better then MAC-EBJ-NL-FF. Note also that Clustered MAC-
EBJ-NL-LCC outperforms MAC-EBJ-NL-FF doing much less constraint propagation.
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Fig. 2. Comparison of MAC-based algo-
rithms, 80% density

Fig. 3. Comparison of MAC-based algo-
rithms, 90% density

Specifically, the Clustered MAC-EBJ-NL-LCC only propagates within its current clus-
ter, but this is sufficient to improve upon MAC-EBJ-NL-FF. However, when we use our
cluster-based search ordering heuristics we can fully propagate using MAC and gain
some additional improvements, up to a factor of 3, over Clustered MAC-EBJ-NL-LCC.

5.2 Comparison of FC-Based Algorithms

We have tested the following FC-based algorithms:

– FC-EBJ guided by FF heuristic that does not do any nogood learning. This solver is
referred to as FC-EBJ-FF-WL (the last two letters abbreviate ‘Without Learning’).

– FC-EBJ-NL guided by the FF heuristic (referred as FC-EBJ-NL-FF).
– FC-EBJ-NL guided by the LCC heuristic (referred as FC-EBJ-NL-LCC). The

breaking of ties is the same as in the case of MAC.

The algorithms that used the nogood learning mechanism are presented in Section 4.2.
The algorithms have been tested on almost the same sets of instances as MAC-based al-
gorithms with the only difference that for the cluster density 90% we have reduced the
add connect parameter to 4 because for value 5 of that parameter, all the algorithms
took too long time to solve the resulting instances. The computational effort, as before,
is measured in the number of backtracks, for each set of parameters 50 runs were ap-
plied with taking the average, the algorithms were stopped if they did more than 108

consistency checks. The experimental results are presented in Figure 4 and 5.
One can clearly observe that the nogood learning considerably improves the per-

formance of the algorithms: both FC-EBJ-NL-FF and FC-EBJ-NL-LCC do much bet-
ter than FC-EBJ-FF-WL. In particular, FC-EBJ-NL-LCC is about 12 times better than
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Fig. 4. Comparison of FC-based algorithms,
80% density

Fig. 5. Comparison of FC-based algorithms,
90% density

FC-EBJ-FF-WL for both considered groups of instances at the phase transition. These
results correlate with the results of Bayardo and Miranker [3] on restricted nogood
learning. Also FC-EBJ-NL-LCC is better than FC-EBJ-NL-FF but the rate of improve-
ment is smaller than in the case when FC is replaced by MAC. It follows that the class
of LCC heuristics are best applicable for MAC-based solvers.

6 Conclusion

It is well known that constraint graphs that are high clustered can be very challenging
to solve using search-based methods. On the other hand, methods based on compilation
require exponential space in the worst case. In this paper we have presented a novel
algorithm for solving clustered CSPs efficiently. This algorithm can detect and exploit
a tractable case automatically. Experimental results show the efficiency of our approach
on large clustered CSPs.
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Abstract. An interesting class of production/inventory control prob-
lems considers a single product and a single stocking location, given a
stochastic demand with a known non-stationary probability distribution.
Under a widely-used control policy for this type of inventory system, the
objective is to find the optimal number of replenishments, their tim-
ings and their respective order-up-to-levels that meet customer demands
to a required service level. We extend a known CP approach for this
problem using a cost-based filtering method. Our algorithm can solve to
optimality instances of realistic size much more efficiently than previous
approaches, often with no search effort at all.

1 Introduction

Inventory theory provides methods for managing and controlling inventories
under different constraints and environments. An interesting class of produc-
tion/inventory control problems is the one that considers the single-location,
single-product case under non-stationary stochastic demand. Such a problem
has been widely studied because of its key role in Material Requirement Plan-
ning [30].

We consider the following inputs: a planning horizon of N periods and a de-
mand dt for each period t ∈ {1, . . . , N}, which is a random variable with prob-
ability density function gt(dt). In the following sections we will assume without
loss of generality that these variables are normally distributed. We assume that
the demand occurs instantaneously at the beginning of each time period. The
demand we consider is non-stationary, that is it can vary from period to period,
and we also assume that demands in different periods are independent. A fixed
delivery cost a is considered for each order and also a linear holding cost h is
considered for each unit of product carried in stock from one period to the next.
We assume that it is not possible to sell back excess items to the vendor at the
end of a period. As a service level constraint we require the probability to be
at least a given value α that at the end of every period the net inventory will
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not be negative. Our aim is to find a replenishment plan that minimizes the
expected total cost, which is composed of ordering costs and holding costs, over
the N -period planning horizon, satisfying the service level constraints.

Different inventory control policies can be adopted to cope with the described
problem. A policy states the rules to decide when orders have to be placed
and how to compute the replenishment lot-size for each order. For a discus-
sion of inventory control policies see [29]. One of the possible policies that can
be adopted is the replenishment cycle policy, (R, S). Under the non-stationary
demand assumption this policy takes the form (Rn, Sn) where Rn denotes the
length of the nth replenishment cycle and Sn the order-up-to-level for replen-
ishment (Fig. 1). In this policy a wait-and-see strategy is adopted, under which
the actual order quantity Qn for replenishment cycle n is determined only af-
ter the demand in former periods has been realized. The order quantity Qn is
computed as the amount of stock required to raise the closing inventory level of
replenishment cycle n − 1 up to level Sn. In order to provide a solution for our
problem under the (Rn, Sn) policy we must populate both the sets Rn and Sn

for n = {1, . . . , N}.
Early works in this area adopted heuristic strategies such as those proposed

by Silver [20], Askin [2] and Bookbinder & Tan [5]. The first complete solu-
tion method for this problem was introduced by Tarim & Kingsman [23], who
proposed a certainty-equivalent Mixed Integer Programming (MIP) formulation
for computing (Rn, Sn) policy parameters. Empirical results showed that such
a model is unable to solve large instances, but Tarim & Smith [24] introduced
a more compact and efficient Constraint Programming (CP) formulation of the
same problem that showed a significant computational improvement over the
MIP formulation.

Fig. 1. (Rn,Sn) policy. Rn denotes the set of periods covered by the nth replenishment
cycle; Sn is the order-up-to-level for this cycle; Q̃n is the expected order quantity;
d̃i + d̃i+1 + . . . + d̃j is the expected demand; b(i, j) is the buffer stock required to meet
service level α
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This paper extends Tarim & Smith’s work, retaining their model but augment-
ing it with a cost-based filtering method to enhance domain pruning. Cost-based
filtering is an elegant way of combining techniques from CP and Operations Re-
search (OR) [7,8]: OR-based optimization techniques are used to remove values
from variable domains that cannot lead to better solutions. This type of domain
filtering can be combined with the usual CP-based filtering methods and branch-
ing heuristics, yielding powerful hybrid search algorithms. Cost-based filtering
is a novel technique that has been the subject of significant recent research, but
to the best of our knowledge has not yet been applied to stochastic inventory
control. In the following sections we will show that it can bring a significant
improvement when combined with the state-of-the-art CP model for stochastic
inventory control.

The paper is organized as follows. Section 2 describes the CP model intro-
duced by Tarim & Smith. Section 3 describes a relaxation that can be efficiently
solved by means of a shortest path algorithm, and produces tight lower bounds
for the original problem which is used to perform further cost-based filtering.
Section 4 evaluates our methods. Section 5 draws conclusions and discusses fu-
ture extensions.

2 A CP Model

In this section we review the CP formulation proposed by Tarim & Smith [24].
First we provide some formal background related to constraint programming.
Recall that a Constraint Satisfaction Problem (CSP) [1,6] is a triple 〈V, C, D〉,
where V is a set of decision variables each with a discrete domain of values
D(Vk), and C is a set of constraints stating allowed combinations of values for
subsets of variables in V . Finding a solution to a CSP means assigning values to
variables from the domains without violating any constraint in C. We may also
be interested in finding a feasible solution that minimizes (maximizes) the value
of a given objective function over a subset of the variables. Constraint solvers
typically explore partial assignments enforcing a local consistency property using
either specialized or general purpose propagation algorithms. Such propagation
algorithms in general exploit some structure of the problem to prune decision
variable domains in more efficient ways.

The stochastic programming (for a detailed discussion on stochastic program-
ming see [33]) formulation for the (Rn, Sn) policy proposed in [5] is

min E{TC} =
∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + h · max(It, 0)) g1(d1)g2(d2) . . . gN(dN )

d(d1)d(d2) . . . d(dN )
(1)

subject to, for t = 1 . . .N
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It + dt − It−1 ≥ 0 (2)
It + dt − It−1 > 0 ⇒ δt = 1 (3)

Pr{It ≥ 0} ≥ α (4)
It ∈ Z, δt ∈ {0, 1} (5)

Each decision variable It represents the inventory level at the end of period t.
The binary decision variables δt state whether a replenishment is fixed for period
t (δt = 1) or not (δt = 0). The objective function (1) minimizes the expected
total cost over the given planning horizon.

The respective CP formulation proposed in [24] is

min E{TC} =
N∑

t=1

(
aδt + hĨt

)
(6)

subject to, for t = 1 . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (7)
Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (8)

Yt ≥ j · δj j = 1, . . . , t (9)
element (Yt, b(·, t), Ht) (10)

Ĩt ≥ Ht (11)
Ĩt, Ht ∈ Z+ ∪ {0}, δt ∈ {0, 1}, Yt ∈ {1, . . . , N} (12)

where b(i, j) is defined by

b(i, j) = G−1
di+di+1+...+dj

(α) −
j∑

k=i

d̃k

The element(X, list[], Y ) constraint [31] enforces a relation such that variable Y
represents the value of element at position X in the given list. Gdi+di+1+...+dj

is the cumulative probability distribution function of di + di+1 + . . . + dj . It is
assumed that G is strictly increasing, hence G−1 is uniquely defined.

Each decision variable Ĩt represents the expected inventory level at the end
of period t. Each d̃t represents the expected value of the demand in a given
period t according to its probability density function gt(dt). The binary deci-
sion variables δt state whether a replenishment is fixed for period t (δt = 1)
or not (δt = 0). The objective function (6) minimizes the expected total cost
over the given planning horizon. The two terms that contribute to the expected
total cost are ordering costs and inventory holding costs. Constraint (7) enforces
a no-buy-back condition, which means that received goods cannot be returned
to the supplier. As a consequence of this the expected net inventory at period t
must be no less than the expected net inventory in period t+1 plus the expected
demand in period t. Constraint (8) expresses the replenishment condition. We
have a replenishment if the expected net inventory at period t is greater than
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the expected net inventory in period t + 1 plus the expected demand in period
t. This means that we received some extra goods as a consequence of an order.
Constraints (9,10,11) enforce the required service level α. This is done by spec-
ifying the minimum buffer stock required for each period t in order to ensure
that, at the end of each and every time period, the probability that the net in-
ventory will not be negative is at least α. These buffer stocks, which are stored in
matrix b(·, ·), are pre-computed following the approach suggested in [23]. In this
approach the authors transformed a chance-constrained model, that is a model
where constraints on some random variables have to be maintained at prescribed
levels of probability, in a completely deterministic one. For further details about
chance-constrained programming see [32]. More specifically the authors devel-
oped a certainty-equivalent constraint for each chance constraint that enforces
the required service level at the end of each replenishment cycle.

2.1 Computational Complexity

The chance-constrained problem presented in [5] for the (Rn, Sn) policy un-
der stochastic demand is PSPACE-complete as shown in [25]. We assume that
negative orders are not allowed, so that if the actual stock exceeds the order-up-
to-level for that period, this excess stock is carried forward and not returned to
the supply source. However, such occurrences are regarded as rare events and ac-
cordingly the cost of carrying the excess stock and its effect on the service level of
subsequent periods is ignored. Under these assumptions the chance-constrained
problem can be expressed by means of the certainty-equivalent model we pre-
sented, where buffer stocks for each possible replenishment cycle are computed
independently. In [4] Florian et. al. gave an overview for the complexity of de-
terministic production planning. In particular they established NP-hardness for
this problem under production cost (composed of a fixed cost and a variable unit
cost), zero-holding cost and arbitrary production capacity constraint. They also
extended this result by considering other possible cost functions and capacity
constraints. Polynomial algorithms are discussed in the same paper for specific
cases. Among these they cited Wagner and Whitin’s [27] work, where the infi-
nite capacity deterministic production planning problem is solved in polynomial
time. Wagner and Whitin’s algorithm relies upon their Planning Horizon Theo-
rem, which exploits the fact that the feasible region is a closed bounded convex
set and that the cost function is concave [4], thus the minimum value for such an
objective function is achieved at one of the extreme points of this set. The spe-
cial structure of the set allows a simple characterization of the production plans
corresponding to its extreme points. The core insight proposed by Wagner and
Whitin is the fact that in the search for the optimal policy it is sufficient to con-
sider programs in which at period t one does not both place an order and bring
in inventory. Their Planning Horizon Theorem states that if it is optimal to incur
a setup cost in period t, when periods 1, . . . , t are considered in isolation, then
we may retain this decision for the N period model without losing optimality.
Therefore it is possible to adopt an optimal program for period 1, . . . , t − 1 con-
sidered separately. It is easy to see that the certainty-equivalent model described
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Fig. 2. a) The infeasible policy and its cost obtained by means of Wagner and Whitin
algorithm. b) The respective feasible policy and its cost. c) The optimal policy and its
cost obtained by using our certainty-equivalent model.

in the former section is an over-constrained version of the infinite capacity deter-
ministic production planning problem. The additional constraints in the model
we presented enforce buffer stocks for each replenishment cycle. Since we have
buffer stocks, the last period of a replenishment cycle usually requires a positive
inventory in our certainty-equivalent model, so it is possible that an order is
placed even if the inventory level is not null. Therefore the simple characteriza-
tion of optimal programs proposed by Wagner and Whitin cannot be applied,
since buffer stock carried from former periods may affect the cost of subsequent
programs.

We shall now show, by using a counter-example, that Wagner and Whitin’s
algorithm cannot be applied to the over-constrained problem, for which therefore
no polynomial algorithm is known. Let us consider a 3-period planning horizon.
The demand is normally distributed in each period with coefficient of variation
0.3. The mean values of the demand are respectively 240, 60, 200 for periods 1, 2,
3. The required service level is 95%, the ordering cost is 130 and the holding cost
is 1. The required buffer stock levels for the possible replenishment cycles are
b(1, 1) = 118, b(2, 2) = 30, b(3, 3) = 99, b(1, 2) = 122, b(2, 3) = 103, b(1, 3) = 157.
The optimal policy can be easily obtained by solving our certainty-equivalent
model (Fig. 2 - c). Such a policy fixes orders in periods 1 and 3 and its cost is
663. Following the same reasoning in [27] (Table 1) the optimal plan for period
1 is to order (entailing an ordering cost of 130 and a holding cost of 118). Two
possibilities must be evaluated for period 2; order in period 2, and use the best
policy for period 1 considered alone (at a cost of 160 + 248 = 408); or order
in period 1 for both periods, and carry inventory into period 2 (at a cost of
130 + 122 · 2 + 60 = 434). The better policy appears to be the first one, but it is
actually the second one. In period 3, if the algorithm in [27] worked there would
be three alternatives: order in period 3, and use the best policy for period 1 and
2 considered alone (at a cost of 229 + 408 = 637); or order in period 2 for the
latter two periods and use the best policy for period 1 considered alone (at a cost
of 536+248 = 784); or order in period 1 for the entire three periods (at a cost of
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Table 1. Wagner and Whitin algorithm steps. In the optimal policy row only the last
period is shown; 3 indicates that the optimal policy for periods 1 through 3 is to order
in period 3 to satisfy d̃3 and adopt an optimal policy for periods 1 through 2 considered
separately.

Period 1 2 3
248 408 637

434 784
1061

Minimum cost 248 408 637
Optimal policy 1 2 3

1061). The policy obtained by Wagner and Whitin’s algorithm is therefore the
best among these three, which places an order in period 1, 2 and in period 3 at a
cost of 637. Unfortunately this policy is infeasible because it requires a negative
order quantity in period 2 (Fig. 2 - a). The respective feasible policy that places
orders in the same periods has a higher cost of 130 · 3 + 118 + 58 + 99 = 665
(Fig. 2 - b). This counter-example shows that Wagner and Whitin’s algorithm
is not suitable for our deterministic equivalent problem.

2.2 Domain Pre-processing

In [24] the authors showed that a CP formulation for computing optimal (Rn, Sn)
policies provides a more natural way of modeling the problem. In contrast to
the equivalent MIP formulation the CP model requires fewer constraints and
provides a nicer formulation. However, the CP model has two major drawbacks.
Firstly, in order to improve the search process and quickly prove optimality, tight
bounds on the objective function are needed. Secondly, even when it is possible
to compute a priori the maximum values that such variables can be assigned to,
these values (and therefore the domain sizes of the Ĩt variables) are large. The
domain size value is equal to the amount of stock required to satisfy subsequent
demands until the end of the planning horizon, meeting the required service level
when only a single replenishment is scheduled at the beginning of the planning
horizon.

To address the domain size issue, Tarim & Smith proposed two pre-processing
methods in order to reduce the size of the domains before starting the search
process, by exploiting properties of the given model and of the (Rn, Sn) policy.
Method I computes a cost-based upper bound for the length of each possible
replenishment cycle T (i, j), starting in period i, for all i, j ∈ {1, . . . , N}, i ≤ j.
Note that T (i, j) denotes the time span between two consecutive replenishment
periods i and j+1. Method I therefore identifies sub-optimal replenishment cycle
lengths allowing a proactive off-line pruning, which eliminates all the expected
inventory levels that refer to longer sub-optimal replenishment cycles. Method
II employs a dynamic programming approach, by considering each period in an
iterative fashion and by taking into account in each step two possible course of
action: an order with an expected size greater than zero is placed or no order
(equivalently an order with a null expected size) is placed in the considered
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period within our planning horizon. The effects of these possible actions in each
step are reflected in the decision variable domains by removing values that are
not produced by any course of action.

3 Cost-Based Filtering by Relaxation

The CP model as described so far suffers from a lack of tight bounds on the
objective function. We now propose a relaxation for our model to compute a
valid lower bound at each node of the search tree. We first show that the CP
model can be reduced to a Shortest Path Problem if we relax constraints (7,8)
for replenishment periods. That is for each possible pair of replenishment cycles
〈T (i, k−1), T (k, j)〉 where i, j, k ∈ {1, . . . , N} and i < k ≤ j, we do not consider
the relationship between the opening inventory level of T (k, j) and the closing
inventory level of T (i, k − 1).

This corresponds to allowing negative replenishments, or the ability to sell
stock back to the supplier. In this way we obtain a set S of N(N +1)/2 possible
different replenishment cycles. Our new problem is to find an optimal set S∗ ⊂ S
of consecutive disjoint replenishment cycles that covers our planning horizon at
the minimum cost. We will show that the optimal solution to this relaxation is
given by the shortest path in a graph from a given initial node to a final node
where each arc has a specific cost.

If N is the number of periods in the planning horizon of the original problem,
we introduce N + 1 nodes. Since we assume, without loss of generality, that
an order is always placed at period 1, we take node 1, which represents the
beginning of the planning horizon, as the initial one. Node N + 1 represents the
end of the planning horizon. Recall that b(i, j) denotes the minimum buffer stock
level required to satisfy a given service level constraint during the replenishment
cycle T (i, j). For each possible replenishment cycle T (i, j − 1) such that i, j ∈
{1, . . . , N + 1} and i < j, we introduce an arc (i, j) with associated cost Q(i, j),
where

Q(i, j) = a + h

j−1∑

k=i+1

(k − i)dk + h(j − i)b(i, j − 1) (13)

The cost of a replenishment cycle is the sum of two components: a fixed ordering
cost a that is charged at the beginning of the cycle when an order is placed, and
a variable holding cost h charged at the end of each time period within the
replenishment cycle and proportional to the amount of stocks held in inventory.
Since we are dealing with a one-way temporal feasibility problem [27], when
i ≥ j, we introduce no arc. The connection matrix for such a graph, of size
N × (N + 1), can be built as shown in Table 2.

By construction the cost of the shortest path from node 1 to node N + 1 in
the given graph is a valid lower bound for the original problem, as it is a solution
of the relaxed problem. Furthermore it is easy to map the optimal solution for
the relaxed problem, that is the set of arcs participating to the shortest path,
to a solution for the original problem by noting that each arc (i, j) represents a
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Table 2. Shortest Path Problem Connection matrix

1 2 . . . j . . . N + 1
1 − Q(1, 2) . . . Q(1, j) . . . Q(1, N + 1)
... − −

. . .
...

. . .
...

i − − − Q(i, j) . . . Q(i, N + 1)
... − − − −

. . .
...

N − − − − − Q(N,N + 1)

replenishment cycle T (i, j − 1). The feasibility of such a solution with respect to
the original problem can be checked by verifying that it satisfies every relaxed
constraint. To find a shortest path, and hence a valid lower bound, we use an
improved Dijkstra algorithm that finds a shortest path in O(n2) time, where
n is the number of nodes in the graph. Details on efficient implementations
of the Dijkstra algorithm can be found in [19]. Usually Dijkstra’s algorithm
does not apply any specific rule for labeling when ties are encountered in sub-
path lengths. This is incorrect if we pre-process decision variable domains as
described in [24]. In fact pre-processing Method I in [24] relies upon an upper
bound for optimal replenishment cycle length. When a replenishment period
i, i ∈ {1, ..., N} is considered, it looks for the lowest j s.t. j ≥ i after which
it is no longer optimal to schedule the next replenishment. This means that,
if other policies exist that share the same expected cost, only the one that has
shorter, and obviously more, replenishment cycles will be preserved by Method I.
Therefore, when the algorithm is implemented in this filtering approach, we need
to introduce a specific rule for node selection in order to make sure that, when
more optimal policies exist, our modified algorithm will always find the one that
has the highest possible number of replenishment cycles (i.e. the shortest path
with the highest possible number of arcs). As there is a complete ordering among
nodes, we can easily implement this rule when labeling by always choosing as
ancestor the node that minimizes the distance from the source and that has the
highest index.

We now see how to use this relaxation during the search process when a
partial solution is provided. If in a given partial solution a decision variable
δk, k ∈ {1, . . . , N} has been already set to 0, then we can remove from the
network every inbound arc to node k and every outbound arc from node k.
This prevents node k from being part of the shortest path, and hence prevents
period k from being a replenishment period. On the other hand, if δk = 1
then we split the planning horizon into two at period k, thus obtaining two new
subproblems {i, . . . , k−1} and {k, . . . , j}. We can then separately solve these two
subproblems by relaxing them and applying Dijkstra’s algorithm. Note that the
action of splitting the time span is itself a relaxation; in fact it means overriding
constraints (7,8) for t = k. It follows that the cost of the overall solution obtained
by merging the two subproblem solutions is again a valid lower bound for the
original problem. Let R(i, j) denote the required minimum opening inventory
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level in period i, i ∈ {1, . . . , N}, to meet demand until period j + 1, where
R(i, j) = b(i, j) +

∑j
t=i d̃t. We can characterize when such a bound is an exact

one: when the solutions of the two subproblems are both feasible with respect
to the original model and the condition

b(i, k − 1) ≤ R(k, j) (14)

is satisfied, the solution obtained by merging those for the independent subprob-
lems is both feasible and optimal for the original problem. We have shown how
to act when each of the possible cases, δi = 1 and δi = 0 is encountered. It is now
possible at any point of the search in the decision tree to apply this relaxation to
compute valid lower bounds. It is also possible to extend this cost-based filter-
ing by considering not only the δt variable assignments, but also the Ĩt variable
assignments. In fact, when we compute the cost of a given replenishment cycle
T (i, j−1) (arc (i, j) in the matrix), we can also consider the current assignments
for the closing inventory levels Ĩt in the periods of this cycle. Since all the closing
inventory levels of the periods within a replenishment cycle are linearly depen-
dent, given an assignment for a decision variable Ĩt we can easily compute all
the other closing inventory levels in the cycle using Ĩt − d̃t − Ĩt−1 = 0, which is
the inventory conservation constraint when no order is placed in period t. When
the closing inventory levels in a replenishment cycle T (i, j − 1) are known it is
easy to compute the overall cost associated with this cycle, which is by definition
the sum of the ordering cost and of the holding cost components, a+ h

∑j−1
t=i Ĩt.

We can therefore associate to arc (i, j) the highest cost that is produced by a
current assignment for the closing inventory levels Ĩt, t ∈ {i, . . . , j − 1}, if no
variable has been assigned yet, we simply use the minimum possible cost Q(i, j),
which we defined before.

4 Experimental Results

In this section we show the effectiveness of our approach by comparing the
computational performance of the state-of-the-art CP model with that obtained
by our approach. A single problem is considered and the period demands are
generated from seasonal data with no trend: d̃t = 50[1 + sin(πt/6)]. In addition
to the “no trend” case (P1) we also consider three others:

(P2) positive trend case, d̃t = 50[1 + sin(πt/6)] + t
(P3) negative trend case, d̃t = 50[1 + sin(πt/6)] + (52 − t)
(P4) life-cycle trend case, d̃t = 50[1 + sin(πt/6)] + min(t, 52 − t)

In each test we assume an initial null inventory level and a normally distributed
demand for every period with a coefficient of variation σt/dt for each t ∈
{1, . . . , N}, where N is the length of the considered planning horizon. We per-
formed tests using four different ordering cost values a ∈ {40, 80, 160, 320} and
two different σt/dt ∈ {1/3, 1/6}. The planning horizon length takes even values
in the range [24, 50] when the ordering cost is 40 or 80 and [14, 24] when the
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Table 3. Test set P1

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 28 0.4 106 2.9 86 1.2 249 6.4 40 0.6 574 17 10 0.1 192 6.4
42 28 0.5 95 2.8 87 1.2 233 5.9 40 0.7 582 15 10 0.2 196 5.4
44 29 0.6 133 4.9 88 1.3 266 8.3 41 0.8 884 26 11 0.2 285 9.0
46 30 0.8 192 7.8 100 1.9 484 19 44 0.9 3495 120 11 0.2 813 31
48 39 1.3 444 20 158 3.2 1024 42 66 2.0 5182 190 18 0.5 1208 48
50 38 0.9 444 21 151 3.6 1024 45 55 1.8 4850 200 15 0.4 1208 52

80

40 52 0.8 1742 78 13 0.2 557 15 19 0.3 9316 300 16 0.3 11276 440
42 49 0.9 1703 61 13 0.2 530 14 20 0.3 17973 530 17 0.3 22291 690
44 51 1.0 4810 210 14 0.2 980 26 21 0.4 38751 1400 18 0.4 50805 1600
46 52 1.1 6063 350 14 0.3 2122 79 31 0.7 103401 4300 18 0.4 111295 4100
48 57 1.9 20670 1400 15 0.3 5284 210 29 0.7 237112 12000 19 0.5 321998 15000
50 57 1.7 18938 1300 15 0.3 5284 230 23 0.6 251265 13000 19 0.5 358174 17000

160

14 1 0.0 141 3.0 56 0.2 156 2.5 1 0.0 112 2.6 1 0.0 116 2.4
16 1 0.0 277 9.0 71 0.3 182 5.1 1 0.0 238 6.7 1 0.0 235 6.8
18 1 0.0 673 19 50 0.3 393 11 1 0.0 799 24 1 0.0 603 16
20 1 0.0 3008 82 61 0.5 1359 22 1 0.0 2887 86 1 0.0 2820 75
22 1 0.0 10620 260 116 1.3 7280 71 1 0.0 14125 380 1 0.0 10739 280
24 1 0.0 61100 1500 165 1.9 31615 320 1 0.0 70996 1800 1 0.0 59650 1500

320

14 1 0.0 149 4.0 1 0.0 181 4.1 1 0.0 109 3.0 1 0.0 128 3.0
16 1 0.0 335 12 1 0.0 361 13 1 0.0 246 8.7 1 0.0 284 9.3
18 1 0.0 813 28 1 0.0 831 28 1 0.0 764 27 1 0.0 700 25
20 1 0.0 2602 94 1 0.0 2415 82 1 0.0 2114 79 1 0.0 2291 82
22 1 0.0 7434 260 1 0.0 7416 260 1 0.0 7006 260 1 0.0 6608 230
24 1 0.0 49663 1600 1 0.0 49299 1500 1 0.0 39723 1400 1 0.0 43520 1500

ordering cost is 160 or 320. The holding cost used in these tests is h = 1 per
unit per period. Our tests also consider two different service levels α = 0.95
(zα=0.95 = 1.645) and α = 0.99 (zα=0.99 = 2.326). All experiments were per-
formed on an Intel(R) Centrino(TM) CPU 1.50GHz with 500Mb RAM. The
solver used for our test is Choco [15], an open-source solver developed in Java.
The heuristic used for the selection of the variable is the usual min-domain /
max-degree heuristic. The value selection heuristic chooses values in increasing
order of size. In our test results a time of 0 means that the Dijkstra algorithm
proved optimality at the root node. A header “Filt.” means that we are apply-
ing our cost-based filtering methods, and “No Filt.” means that we solve the
instance using only the CP model and the pre-processing methods. Tables 3, 4,
5 and 6 compare the performance of the state-of-the-art CP model with that of
our new method.

When a=320, and often when a=160, the Dijkstra algorithm proves optimality
at the root node. When a ∈ {40, 80} Dijkstra is unable to prove optimality at
the root node, so its main contribution consists in computing lower bounds
during the search. However, our method easily solves instances with up to 50
periods, both in term of explored nodes and run time, for every combination of
parameters we considered. In contrast, for the CP model both the run times and
the number of explored nodes grow exponentially with the number of periods,
and the problem becomes intractable for instances of significant size. In all cases
our method explores fewer nodes than the pure CP approach, ranging from an
improvement of one to several orders of magnitude. Apart from a few trivial
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Table 4. Test set P2

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 5 0.1 7 0.1 7 0.1 8 0.1 14 0.3 23 0.4 5 0.1 12 0.2
42 5 0.1 7 0.1 7 0.1 8 0.1 14 0.2 23 0.4 5 0.1 10 0.1
44 5 0.1 7 0.1 7 0.1 8 0.1 14 0.3 23 0.5 5 0.1 10 0.2
46 5 0.1 7 0.1 7 0.1 8 0.2 14 0.3 23 0.5 5 0.1 10 0.2
48 5 0.1 7 0.2 7 0.1 8 0.2 14 0.3 23 0.5 5 0.1 10 0.2
50 5 0.1 7 0.2 7 0.2 8 0.2 14 0.3 23 0.6 5 0.1 10 0.2

80

40 24 0.4 4592 14 17 0.3 275 8.3 46 0.9 2565 63 44 0.9 1711 45
42 24 0.4 4866 13 17 0.3 283 6.7 46 1.0 3027 68 44 0.7 2043 48
44 24 0.4 5091 15 17 4.7 280 7.9 47 1.1 6024 160 45 0.9 4299 120
46 46 0.9 5291 45 19 0.4 545 17 51 1.3 14058 410 49 1.1 10311 290
48 37 0.8 5544 51 19 0.5 545 18 53 1.5 14058 440 53 1.3 10311 310
50 34 0.7 5850 51 19 0.5 545 19 56 1.8 14079 470 54 1.4 10347 330

160

14 2 0.0 166 3.6 25 0.1 84 1.0 1 0.0 148 2.9 1 0.0 171 3.4
16 25 0.1 154 4.3 25 0.1 65 1.2 1 0.0 329 8.6 1 0.0 383 11
18 24 0.1 485 11 27 0.2 174 2.9 1 0.0 948 24 1 0.0 1056 28
20 34 0.3 2041 35 50 0.4 707 7.9 1 0.0 4228 110 1 0.0 4730 120
22 50 0.6 9534 120 35 0.3 2954 29 1 0.0 20438 500 1 0.0 23675 530
24 52 0.5 30502 360 40 0.4 7787 88 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.6 1 0.0 278 6.4 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 14 1 0.0 387 12 1 0.0 452 14
18 1 0.0 1447 49 1 0.0 1208 41 1 0.0 1100 34 1 0.0 1268 41
20 1 0.0 4792 160 1 0.0 4219 150 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 670 1 0.0 20417 610 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 2600 1 0.0 75546 2500 1 0.0 88602 2800

Table 5. Test set P3

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 3 0.0 5 0.0 3 0.0 4 0.0 7 0.1 9 0.2 3 0.0 5 0.0
42 3 0.0 5 0.0 3 0.0 4 0.0 7 0.1 9 0.2 3 0.0 5 0.0
44 4 0.0 7 0.1 4 0.0 6 0.1 8 0.1 14 0.3 4 0.0 7 0.1
46 9 0.2 15 0.3 5 0.1 13 0.3 17 0.3 40 1.1 8 0.2 14 0.3
48 8 0.2 15 0.3 5 0.1 13 0.3 17 0.4 56 1.8 14 0.3 25 0.6
50 7 0.2 15 0.3 5 0.1 13 0.3 17 0.4 56 1.9 13 0.3 25 0.5

80

40 24 0.5 349 10 10 0.1 55 1.2 24 0.4 722 20 10 0.1 310 8.7
42 26 0.5 354 8.6 8 0.1 53 1.2 23 0.5 1436 35 12 0.2 315 7.5
44 27 0.5 571 17 9 0.1 88 2.4 24 0.5 3461 110 13 0.2 1053 32
46 42 1.0 2787 90 10 0.2 258 8.1 37 1.3 10612 360 21 0.5 2881 94
48 41 1.1 6803 240 10 0.2 385 13 33 1.3 28334 1100 21 0.6 7790 280
50 42 1.2 6575 250 10 0.2 385 14 35 1.5 26280 1100 21 0.7 7371 280

160

14 7 0.0 23 0.2 9 0.0 16 0.1 14 0.1 53 0.6 10 0.1 29 0.3
16 5 0.0 19 0.2 9 0.0 18 0.2 19 0.1 52 0.8 9 0.1 26 0.4
18 7 0.0 42 0.5 10 0.1 30 0.3 21 0.1 149 2.2 11 0.1 87 1.2
20 17 0.2 137 1.3 12 0.1 70 0.7 23 0.2 512 6.1 20 0.3 310 3.5
22 9 0.1 376 4.0 15 0.1 221 2.3 28 0.3 1848 18 15 0.2 938 9.4
24 10 0.2 995 12 25 0.3 543 6.3 37 0.7 4784 55 19 0.2 2471 30

320

14 1 0.0 253 4.2 1 0.0 232 3.8 1 0.0 310 4.4 1 0.0 217 3.4
16 1 0.0 518 11 1 0.0 518 11 1 0.0 707 14 1 0.0 465 8.5
18 1 0.0 1475 35 1 0.0 1170 27 1 0.0 1995 44 1 0.0 1416 33
20 1 0.0 5342 140 1 0.0 4059 96 1 0.0 6678 170 1 0.0 5232 140
22 1 0.0 21298 550 1 0.0 18065 440 1 0.0 25522 640 1 0.0 21756 560
24 1 0.0 86072 2300 1 0.0 70969 1800 1 0.0 101937 2800 1 0.0 91358 2400
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Table 6. Test set P4

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 7 0.1 21 0.3 11 0.1 24 0.5 30 0.6 89 1.8 7 0.1 33 0.5
42 7 0.1 18 0.3 11 0.2 21 0.4 30 0.9 91 2.0 7 0.1 31 0.5
44 8 0.1 32 0.7 12 0.2 37 0.9 31 0.7 152 3.6 8 0.1 51 1.0
46 14 0.5 83 2.0 14 0.3 93 2.4 46 1.4 474 12.4 13 0.3 126 2.8
48 12 0.2 83 2.2 14 0.3 93 2.6 56 2.3 735 20.9 19 0.4 188 4.5
50 11 0.2 83 2.3 14 0.3 93 2.8 58 2.5 735 22.0 18 0.4 188 4.9

80

40 46 0.7 1372 39 24 0.4 433 13 53 1.1 5098 130 36 0.7 2133 55
42 51 1.5 1673 39 20 0.4 438 11 50 1.1 11452 270 41 1.1 2513 59
44 52 1.0 2907 74 21 0.4 716 23 52 1.3 27184 780 43 1.3 8776 240
46 78 2.2 13306 380 23 0.5 2178 74 76 2.4 77332 2600 62 2.3 22582 690
48 75 1.8 32709 1000 23 0.6 3223 120 76 3.1 202963 7500 61 2.3 60115 2000
50 77 1.9 31547 1100 23 0.6 3223 130 81 3.2 191836 7600 63 3.3 58171 2100

160

14 11 0.0 166 3.6 25 0.1 84 1.5 1 0.0 148 3.0 1 0.0 171 3.4
16 9 0.0 154 4.3 25 0.1 65 1.6 1 0.0 329 8.7 1 0.0 383 11
18 10 0.1 485 11 27 0.1 174 4.0 1 0.0 948 25 1 0.0 1056 28
20 19 0.2 2041 35 50 0.4 707 12 1 0.0 4228 110 1 0.0 4730 120
22 17 0.1 9534 120 35 0.3 2954 41 1 0.0 20438 510 1 0.0 23675 540
24 27 0.4 30502 360 40 0.4 7787 130 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.5 1 0.0 278 8.7 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 18 1 0.0 387 12 1 0.0 452 14
18 1 0.0 1447 48 1 0.0 1208 56 1 0.0 1100 34 1 0.0 1268 41
20 1 0.0 4792 160 1 0.0 4219 200 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 660 1 0.0 20417 860 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 3700 1 0.0 75546 2700 1 0.0 88602 2800

instances on which both methods take a fraction of a second, this improvement
is reflected in the run times.

5 Conclusion

It was previously shown [24] that CP is more natural than mathematical pro-
gramming for expressing constraints for lot-sizing under the (Rn, Sn) policy, and
leads to more efficient solution methods. This paper further improves the effi-
ciency of the CP-based approach by exploiting cost-based filtering. The wide
test-bed considered shows the effectiveness of our approach under different pa-
rameter configurations and demand trends. The improvement is several orders
of magnitude in almost every instance we analyzed. We are now able to solve to
optimality problems of a realistic size with planning horizons of fifty and more
periods, in times of less than a second and often without search, since the bounds
produced by our DP relaxation proved to be very tight in many instances. In
future work we aim to extend our model to new features such as lead-time for
orders and capacity constraints for the inventory.
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